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THEZMOPHYSICAL PROPERTIES OF SIX CHARRING ABLATORS FROM 

140° TO TOO0 K AND TWO CHARS FROM 800° TO 3000° K 

R. Gale Wilson (Comp,iler) 
Langley Research Center 

SUMMARY 

Thermophysical property data of the type necessary for the performance 
analysis and design of entry heat-shields are presented for several ablation 
materials over the temperature range from -2OOO to 3000° F (144O to 30300 K). 
The data include enthalpy, specific heat, thermal conductivity, thermal expan- 
sion, density, and tensile and compressive mechanical properties of six abla- 
tion materials over the temperature range from -2OOO to 800° F (144O to TOO0 K). 
The enthalpy, specific heat, thermal conductivity, and total normal emittance 
of the chars formed from thermal degradation of two of the materials are also 
included. 
1000° to 5000° F (8100 to 3030° K). The materials studied are a high-density 
phenolic-nylon, a low-density phenolic-nylon, a filled silicone resin, the 
filled silicone resin in honeycomb, a carbon-fiber-reinforced phenolic, and a 
low-density filled epoxy in honeycomb. The first four materials were formulated 
and fabricated at the NASA Langley Research Center. The last two are commer- 
cially produced materials - Narmco 4028 and Avcoat 5026-39-HC G. 
studied were produced from the high- and low-density phenolic-nylon materials. 

The char properties were measured over the temperature range from 

The chars 

The thermophysical property measurements were made under NASA contracts 
NAS1-2977 and NAS1-2978, with Melpar, Incorporated, and Southern Research 
Institute, respectively. Measurements on the low-density phenolic-nylon and 
the filled silicone resin were duplicated under the two contracts. The data 
obtained by the two independent firms are presented in graphical and tabular 
forms. The methods of measurement, the test apparatus, the procedures, and the 
composition and fabrication of the materials are described. 

INTRODUCTION 

Knowledge of certain basic physical properties of ablation materials and 
their temperature dependence is essential to the evaluation of their design and 
performance in entry heat-shield applications. 
in June 1963 established a contractual program for the measurement of thermo- 
physical properties of ablation materials. 
thermal expansion, density, emittance, and stress-strain data obtained during 
the period from June 1963 to January 1963 by Melpar, Incorporated (Contract 
Number NAS1-2977) and Southern Research Institute (Contract Number NAS1-2978) 

The NASA Langley Research Center 

Specific heat, thermal conductivity, 



a re  presented i n  t h i s  report .  
from measurements made a t  the NASA Langley Research Center t o  determine the 
pore-size and pore-volume dis t r ibut ions of the porous materials. 

I n  addition, the report includes porosity data 

Six materials were evaluated (1) a high-density phenolic-nylon, (2)  a low- 
density phenolic-nylon, ( 3 )  a f i l l e d  si l icone resin,  ( 4 )  the f i l l e d  si l icone 
res in  i n  honeycomb, (5) a carbon-fiber-reinforced phenolic, and (6) a low- 
density f i l l e d  epoxy i n  honeycomb. The first four materials were formulated 
and fabricated a t  the NASA Langley Research Center. 
c i a l l y  produced materials, namely, Narmco 4028 and Avcoat 5026-39-HC G, i n  t ha t  
order. A l l  the aforementioned properties except emittance were determined fo r  
the s ix  materials over the temperature range from -2OOO t o  8000 F ( 1 4 4 O  t o  
700° K ) .  
emittance were measured fo r  high- and low-density phenolic-nylon chars over the 
temperature range from 10000 t o  5000° F (8100 t o  3030° K ) .  
ments on the low-density phenolic-nylon and the f i l l e d  si l icone res in  i n  the 
lower temperature range were duplicated on the two contracts, i n  order t o  ascer- 
t a i n  the r e l i a b i l i t y  of the data. All the data a re  presented i n  graphical and 
tabular forms, and the duplicate data are  presented i n  a manner that  f a c i l i t a t e s  
comparison of the resu l t s  obtained independently by the two investigating 
groups. The methods of measurement and the t e s t  apparatus employed are  
described i n  separate appendixes and/or referenced. The t e s t  procedures, the 
material compositions, and the methods of material fabrication a re  presented. 
For the convenience of the reader, a l i s t  of tables  precedes the tables  and a 
l i s t  of f igures precedes the figures.  The uni t s  fo r  the physical quantit ies 
used i n  t h i s  report are  given both i n  U.S. Customary Units and i n  the 
International System of Units (S I ) .  
i n  reference 1 and appendix A .  

The l a s t  two are  commer- 

I n  addition, specif ic  heat, thermal conductivity, and t o t a l  normal 

Property measure- 

Factors re la t ing  the  two systems are  given 

The reader should be reminded tha t  the properties of any material a t  a 
par t icular  temperature can be defined uniquely only fo r  thermal equilibrium or 
steady-state conditions. I n  view of the f ac t  t ha t  ablation materials by the 
nature of t h e i r  structure,  composition, and appLication a re  unstable, it must 
be realized tha t  thermophysical properties determined a t  temperatures i n  the 
thermal degradation zone a re  influenced by the time-dependent and temperature- 
dependent thermochemical reactions tha t  occur. For a l l  the  materials studied 
i n  these e f for t s ,  excepting the chars, some thermal degradation begins a t  about 
300° t o  350° F (422O t o  450° K), and a t  higher temperatures the data are,  a+, 
best ,  a compromise. The thermal degradation process absorbs heat supplied t o  
the mater’ial and thus prevents the achievement of steady-state o r  equilibrium 
conditions. The low thermal d i f fus iv i t ies  of the materials add t o  the problem. 

The duties of the compiler of t h i s  report included the responsibil i ty for 
obtaining the porosity measurements as well as  the establishment of the work 
requirements, technical monitoring of the contracts, and compilation of the 
other thermophysical data from contract work. 
Melpar, Inc., fo r  the assistance of L. K. Eliason, D. H. Rice, E.  L. Sanford, 
and T.  L. Poe, and t o  Southern Research I n s t i t u t e  fo r  the assistance of C .  D. 
Pears, G.  F. G i l l i s ,  and C .  M. Pyron, Jr. 

Acknowledgment i s  made t o  
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DESCRIPTION OF ABLATION MAmRIALS 

Virgin Materials 

High-density phenolic-nylon.- The high-density phenolic-nylon consisted of 
5O$ by w e i g h t  of Union Carbide "Bakelite" BRP-5549 phenolic resin,  and 50s by 
weight of W o n t  r l Z y t e l t '  lo3 nylon powder. 
i n  a mold at  a pressure of TOO p s i  (4.82 MN/$) w h i l e  i n  vacuum and a t  a t e m -  
perature of 320° F ( 4 3 3 O  K)  f o r  about 2 hours. 
the  mold t o  room temperature with pressure and vacuum maintained. A f t e r  removal 
from the mold, the  material  was postcured according t o  the  following temperature 
cycle : 

The mixed materials were hot-pressed 

The material  was then cooled i n  

a. S ta r t  a t  looo F ( 311° K )  , hold 1 hour 

b. Raise temperature loo F/hr ( 5 . 5 O  K / h r )  t o  20O0 F (366O K) ,  hold 10 hours 

c. Raise temperature 5 O  F/hr (2 .8O K / h r )  t o  240° F (389' K ) ,  hold 10 hours 

d. Raise temperature 5 O  F/hr (2.8O K / h r )  t o  300° F (422O K ) ,  hold 10 hours 

e. Cool a t  25O F/hr (14O K / h r )  t o  20O0 F (366O K) , hold 4 hours 

f .  Cool t o  room temperature a t  25O F/hr ( 1 4 O  K/hr) 

Low-density phenolic-nylon.- The low-density phenolic-nylon consists of 
25$ by weight of Union Carbide "Bakelite" BRP-5549 phenolic resin,  25% by 
weight of Union Carbide phenolic Microballoons (BJO-O930), and 50s by weight of 
W o n t  "Zytel" lo3  nylon powder. 
a ready-mixed molding compound. 

The materials were purchased i n  the form of 

The procedures for  molding and postcuring the  low-density phenolic-nylon 
were the same as  those fo r  the high-density phenolic-nylon except t ha t  the ram 
stops on the molding press were used t o  l i m i t  the  molding pressure and thus 
achieve a predetermined and reproducible density of the molded material. 

F i l l ed  s i l icone resin.-  The f i l l e d  s i l icone res in  consists of 70% by 
weight of Dow Corning Sylgard 182 Resin, 14% by weight of Emerson and Cuming, 
Inc. SI grade Eccospheres, 9$ by weight of Union Carbide phenolic Microballoons 
(E!JO-O930), and 7% Sylgard 182 Curing Agent (ca ta lys t ) .  
Microballoons were mixed by tumbling i n  vacuum a t  210° F (372O K )  f o r  2 hours 
t o  remove moisture and postcure the  Microballoons. After the catalyst  had been 
added t o  the resin,  the  already mixed Eccospheres and Microballoons were slowly 
added t o  the res in  by manual mixing. 
under vacuum t o  remove entrapped a i r  from the mixture. 
cured a t  lkOo F ( 3 3 3 O  K )  a t  atmospheric pressure f o r  about 12 hours. 

The Eccospheres and 

The material was drawn in to  the mold 
The molded blocks were 

F i -ueds i l icone  res in  i n  honeycomb.- The f i l l e d  s i l icone res in  i n  honey- 
comb i s  a compo-site of the  f i l l e d  s i l icone res in  and phenolic-glass honeycomb 
with a nominal c e l l  s i ze  of 1/4 inch (0.63 cm) . 
(GF11 cloth)  of Hexcel Products, Inc. It has a nominal density of 3.5 lb / f t3  

The honeycomb i s  type HRP 
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(56 kg/d). 
ceding material only in that the honeycomb was mechanically forced into the 
filled silicone resin while the resin was still in the mold. 

The fabrication of this material differed from that of the pre- 

Carbon-fiber-reinforced-p&erolic.- The carbon-fiber-reinforced phenolic, 
containing approximately 50% by weight of 1/4-inch (0.63-em) -long carbon fibers 
and 30% by weight of phenolic resin, was obtained frob the Narmco Materials 
Division of the Whittaker Corporation in the form of a molding compound desig- 
nated as Narmco 4028 and molded at the NASA Langley Research Center. The com- 
pound was hot-pressed at a pressure of 2000 psi (13.79 MN/m2) while in vacuum 
and at a temperature of 325O F (436' K) for 1.5 hours. 
in the mold to room temperature, with pressure and vacuum maintained. After 
removal from the mold, the material was postcured according to the following 
temperature cycle: 

The material was cooled 

a. Start at 200° F (366' K), hold 4 hours 

b. Raise the temperature 25O F/hr (14O K/hr) to 230° F (394' K) , hold 
4 hours 

e .  Raise the temperature 25O F/hr (14' K/hr) to 325O F (436' K), hold 
4 hours 

d. Cool at 40° F/hr (22O K/hr) to room temperature 

m i l l e d  __ _ _  _ -  eJgq- in honeycomb. - The low-density filled epoxy in 
honeycomb was obtained from the Research and Advanced Development Division of 
Avco- Corporation, and is commercially designated Avcoat 5026-39-HC G. 
position of the material is proprietary information. 

The com- 

Thermally Degraded Materials 

High-density phenolic-nylon char.- The high-density phenolic-nylon char 
was produced by exposing 3-inch-diameter (7.6-cm) disks of the high-density 
phenolic-nylon to an electric-arc-heated subsonic stream of nitrogen for 
210 seconds, the time required to produce a char layer of 1/4-inch (0.63-em) 
thickness. The arc jet, described in reference 2, was operated with a nozzle 
2 inches (5 .1 em) in diameter and with arc power of 1000 kilowatts. 
these conditions, the arc jet produced a thermal flux of about 100 Btu/ft*-sec 
(1.13 MW/m2) on the phenolic-nylon disks located 2 inches (5.1 em) from the 
nozzle, resulting in a maxim surface temperature of about 3000' F ( 1920° K) . 
Stagnation pressure on the specimen was slightly greater than atmospheric 
pressure. 

Under 

Low-density__p_he-nol--c--GgoF- char. - The low-density phenolic-nylon char was 
produced by exposing 3-inch-diameter (7.62-cm) disks of the low-density 
phenolic-nylon material to an arc jet, in the same manner as that described for 
high-density phenolic-nylon char, except that the exposure time required to 
produce a 1/4-inch (0.63-cm) char layer was 120 seconds. 
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A l l  the materials were supplied by NASA t o  the contractors i n  the  form of 
blocks or  disks; fabrication of the t e s t  specimens was par t  of the contract 
requirements. 

APPARATUS, PROCEWRES, AND S P E C m S  

Details concerning the apparatus, t es t '  procedures, and t e s t  specimens 
related t o  each thermophysical property measurement a re  presented i n  appen- 
dixes B t o  G .  I n  some cases, additional information i s  referenced. The appen- 
dixes a re  appropriately arranged t o  distinguish between the apparatus and 
methods of Melpar, Inc. and those of Southern Research Ins t i t u t e .  The tempera- 
tu re  range for  which each method i s  applicable i s  a lso indicated. 

I n  the w o r k  requirements f o r  the thermophysical property measurements, 
the  NASA originally requested specimen temperature-rise ra tes ,  where practica- 
ble,  of a t  l ea s t  looo F/min ( 0 . 9 2 6 ~  K/sec) between measurements above ambient 
temperature, with data a t  each t e s t  point t o  be obtained i n  the minimum time 
required t o  a t t a in  thermal equilibrium, o r  steady s ta te ,  and t o  record appro- 
p r i a t e  data. Because of the low thermal diff 'usivity and high thermal reactiv- 
i t y  of the ablation materials, and the incompatibility of some standard types 
of measurement apparatus with a 1000 F/min ( 0 . 9 2 6 ~  K/sec) r i s e  ra te ,  it was 
necessary i n  most cases t o  accept lower ra tes .  

RESULTS AND DISCUSSION 

Enthalpy and Specific Heat 

Enthalpy and specific heat t o  800° F (TOO0 K).- Enthalpy and specific heat 
of the s ix  ablation materials were determined by procedures and apparatus 
described i n  appendix B. 
by Southern Research I n s t i t u t e  ( S R I )  t o  obtain rapid temperature-rise ra tes .  
These ra tes  for  the low-density phenolic-nylon were 120° F/min (1.1l0 K/s) near 
the outer surface and 75O F/min ( 0 . 6 9 ~  K / s )  a t  the center. For the f i l l e d  s i l -  
icone resin,  the r i s e  r a t e  was 135' F/min (l.25O K / s )  a t  the  outer surface and 
114O F/min (l.O?O K/s) a t  the  specimen center. Subsequent soaking times of 15 
t o  20 minutes i n  a furnace were required t o  es tabl ish equilibrium. 

A supplementary radiant-heating furnace was u t i l i zed  

I n  the measurements by Melpar the temperature-rise r a t e s  were lower than 
those of SRI. The specimen w a s  s tabi l ized a t  the tes t  temperature fo r  30 min- 
utes  t o  es tabl ish equilibrium. 

The enthalpy data on a l l  the materials a re  given i n  tab le  1. The specific 
heat data a re  presented i n  tab le  2.  The enthalpy data on the high-density and 
low-density phenolic-nylon are  presented i n  figures 1 and 2, respectively. The 
reference temperature f o r  the Melpar data i s  3 2 O  F (273O K) and tha t  fo r  the 
S R I  data i s  850 F (303O K ) .  
curves i n  figure 2 a t  different  temperatures should be constant. The 

Hence, the enthalpy difference between the two 
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specific-heat curves, determined from the slopes of t he  enthalpy curves, are 
shown i n  figure 3.  
agreement except a t  the  low and high ends of the temperature range. 
( 1 4 4 O  K),  the  percentage difference between the two sets of data i s  about 
22 percent, and a t  700° F (644' K )  it i s  about 19 percent. 
ence here (and as used l a t e r  i n  the report)  i s  defined as the difference 
between the two sets of data divided by t h e i r  average and multiplied by 100. 
i s  of in te res t  t o  note i n  figure 3 tha t  the specif ic  heats of high-density and 
low-density phenolic-nylon are  experimentally ident ical ,  as  would be expected 
from t h e i r  ident ical  basic composition. 

It can be seen tha t  the Melpar and SRI data a re  i n  fair  
A t  -2OOO F 

Percentage differ- 

It 

Examination of weight-loss values i n  t ab le  1 show tha t  s ignif icant  weight 
losses occurred a t  temperatures above kOOo F (477' K)  . 
given temperature was, i n  every case, calculated from the  f i n a l  weight of the 
specimen after test  a t  t h a t  temperature. 

The enthalpy, a t  a 

The enthalpy data on the  f i l l e d  s i l icone res in  and the  f i l l e d  s i l icone 
res in  i n  honeycomb are given i n  figure 4, and the  corresponding specific-heat 
data i n  figure 5. The enthalpy data obtained by Melpar fo r  the f i l l ed  sil icone 
r e s in  and the f i l l e d  r e s in  i n  honeycomb coincide, indicating tha t  e i ther  the 
specific heat of the  honeycomb i t s e l f  i s  similar t o  tha t  of the f i l l ed  res in  or 
t h z t t  the  re la t ive  volume of the honeycomb i s  too small for it t o  make an appre- 
ciable contribution t o  the enthalpy of the composite. The percentage difference 
between the  Melpar and SRI enthalpy data on the f i l l e d  s i l icone resin i s  about 
33 percent a t  -2OOO F (1440 K)  and about 13 percent a t  730° F (6720 K)  . 

The enthalpy c w e s  f o r  the carbon-fiber-reinforced phenolic and the low- 
density f i l l e d  epoxy i n  honeycomb are  presented i n  figures 6 and 7, respec- 
t ive ly ,  and the corresponding specific-heat data a r e  presented i n  figure 8. 

Enthalpy and specif ic  heat- t o  s-30 F-(3030° K1.- The enthalpy and spe- 
c i f i c  heat of the high- and low-density phenolic-nylon chars w e r e  determined by 
Southern Research I n s t i t u t e  using a drop-type i c e  calorimeter which i s  described 
i n  appendix B. The enthalpy data are  presented i n  tab le  1 and figures 9 and 10, 
and the  corresponding specific-heat data are  presented i n  tab le  2 and figures 11 
and 12. The values of specific heat were obtained a s  the slopes of the enthalpy 
curves read a t  1000° F (533' K )  increments around mean temperatures and thus 
give the average specific heats a t  these mean temperatures. Since the enthalpy 
curves average out considerable sca t te r  i n  the data a t  a given temperature, the 
specif ic  heats are  actual ly  defined only within bands about the simplified curves 
shown i n  figures 11 and 12. 

Thermal Conductivity 

Thermal conductivity--0 W-0-O F (70C-O K ) - . -  Thermal conductivities of the  
s i x  ablation materials were- determined according t o  the procedures and tech- 
niques described i n  appendix C .  The data of Melpar were obtained by using a 
radial-heat-flow technique requiring samples 1 inch (2.54 cm) i n  diameter and 
1 inch (2.34 cm) long. The data of Southern Research I n s t i t u t e  were obtained 
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on a guarded-hot-plate apparatus by using 3-inch-diameter ( 7.62-cm) disk 
specimens. 

The conductivity data are presented i n  table 3 and figures 13 t o  19. The 
data on high-density phenolic-nylon are contained i n  figure 13. 
between the Melpar and SRI data on low-density phenolic-nylon can be seen i n  
figure 14. 
200° K ) ,  the  percentage difference between the smoothed data of Melpar and 
those of SRI i s  I 2  t o  19 percent. 
(366O K) . 
the smoothed data a t  200° F. 

A comparison 

In the temperature region between -2OOO and -1000 F (1440 and 

The difference i s  about 35 percent a t  200° F 
However, s ca t t e r  i n  the SRI data i s  about 23 percent of the value of 

The data of Melpar and SRI on the  f i l l e d  si l icone res in  a re  shown together 
The agreement f o r  this material i s  be t te r  than that f o r  the low- 

Data sca t t e r  i s  as much as  

i n  figure 15. 
density phenolic-nylon, but the percentage difference between the smoothed 
values i s  as much as  24 percent a t  200' F (366' K ) .  
18 percent of smoothed values a t  t h i s  temperature. 
data were obtained by proceeding from the lower temperature l eve l  t o  the  next 
higher one with the same specimen, except that i n  some cases an individual 
specimen was used t o  obtain a single data point a t  the higher temperatures. 
The temperature-gradient AT data are  presented i n  tab le  3 f o r  SRI. The AT 
data from Melpar ranging from about 5' t o  2 5 O  F ( 3 O  t o  l 3 O  K) were generally 
lower than those from SRI except i n  the degradation-temperature region where 
they w e r e  as  high as  1800 F (355O K ) .  
of AT does not provide a sat isfactory explanation fo r  the difference between 
the  Melpar and SRI data, since the biggest difference occurs i n  the region 
where the conductivity i s  not changing rapidly with temperature. 

Both the Melpar and SRI 

However, the difference between values 

The designations f o r  the  three character is t ic  directions of the honeycomb 
materials a re  shown i n  figure 16. 
s i l icone res in  i n  honeycomb a re  presented i n  f i g w e  17. 
honeycomb makes a measurable difference i n  the conductivity fo r  different  
directions; the conductivity i s  greatest  i n  direction C y  p a r a l l e l  t o  the honey- 
comb ce l l s .  

The thermal-conductivity data for  the f i l l e d  
The presence of the 

The thermal-conductivity data on the carbon-fiber-reinforced phenolic, 
and the f i l l e d  epoxy i n  honeycomb are  given i n  figures 18 and 19. 

It should be pointed out t ha t  the actual  weight losses due t o  degradation 
during the thermal-conductivity measurements were probably greater than those 
reported f o r  corresponding temperatures i n  tab le  1 f o r  the enthalpy measure- 
ments, because longer exposure times were required. Typically, 3 t o  5 hours 
were necessary t o  s t ab i l i ze  a t  a par t icu lar  temperature. I n  addition, the low 
conductivity of the materials i n  most cases resulted i n  hot-face temperatures 
considerably greater than the mean temperatures reported, with consequent 
thermal degradation greater than would be implied by the mean temperatures. 
Southern Research Insti tute estimated t h a t  thiclmess uncertainty due t o  thermal 
degradation i n  some cases resul ted i n  possible errors  i n  conductivity calcula- 
t i o n  of about k7$, a f t e r  corrections were made. 
resul ted from excessive cracking of specimens a t  mean temperatures i n  excess 
of 700° F (6440 K) . 

Additional uncertainty 
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Them-l conductivi4y403000° F (5030' K) . - A s t r i p  specimen configuration 
i n  conjunction with a radial-heat-flow apparatus was used t o  determine the con- 
ductivity of high-density and low-density phenolic-nylon char from about 1000° 
t o  50000 F (8100 t o  3030° K) . 
measurements were made i n  a helium environment a t  about 1 atmosphere (0.1 MN/m2) 
pres sure. 

The apparatus i s  described i n  appendix C.  The 

The thermal-conductivity data fo r  the chars a re  presented i n  tab le  3 and 
f igures  20 and 21. 
radiation i s  probably an important factor  i n  the heat t ransfer .  

The rapidly changing slopes of the  curves indicate that 

It can be seen tha t  the averaged conductivity of the high-density phenolic- 

There i s  considerable sca t te r  i n  the data for  both 
nylon char ( f ig .  20) i s  somewhat lower than tha t  of the low-density phenolic- 
nylon char ( f ig .  21). 
materials. 

Thermal Expansion 

The apparatus and procedures applied i n  the measurement of thermal expan- 
sion of the s i x  ablation materials t o  800° F (700° K )  a r e  described i n  appen- 
dix D. Quartz-tube dilatometers were u t i l i zed  i n  a l l  the  measurements. 

The thermal-expansion data a re  presented i n  tab le  4 and i n  figures 22 
t o  29. The expansion curve fo r  high-density phenolic-nylon i s  given i n  f ig -  
ure 22. 
i s  nearly constant from about 200° F t o  400' F (478' K). 
used t o  calculate the coefficients of thermal expansion a t  the lower and upper 
ends of the curve a re  shown i n  the figure. 

The coefficient of expansion increases up t o  about 2000 F (366O K) and 
The slopes which were 

The thermal-expansion data of Melpar on the low-density phenolic-nylon are  
presented i n  figure 23 and those of SRI i n  f igure 24. 
the nearly l inear  region of the expansion curves from about -1000 t o  1000 F 
(2000 t o  311° K) the  coefficient of thermal expansion i s  about 30 p in / in -q  
(50 pm/m-OK). 
be very e r r a t i c  above 150° F (339O K) . 
t i on  precludes the  acquisit ion of meaningful data; contraction, rather than 
expansion, occurs. 

It c m  be seen tha t  for 

The data of SRI show the expansion behavior of 'the material t o  
Above 400° F (478' K), thermal degrada- 

The thermal-expansion data of Melpar and SRI on the  f i l l e d  si l icone res in  
a r e  shown i n  figures 25 and 26, respectively. 
t o  422O K) the  coefficient of expansion from the SRI curve i s  constant a t  about 
70 p in / in -q  (130 pm/m-OK), and the  Melpar curve has approximately the same 
slope i n  tha t  temperature region. Er ra t ic  behavior of the material occurs 
above 400° F (478O K ) ,  a s  seen i n  figure 26, and rapid contraction occurs above 
600° F (5890 K ) .  
cone resin,  the percentage difference between the Melpar and SRI values for  the 
coefficient of l i nea r  thermal expansion f o r  the nearly l inear  regions of the 
expansion curves i s  no greater than 6 or 7 percent. 

From about Oo t o  3 0 0 O  F (255' 

For both the low-density phenolic-nylon and the f i l l e d  s i l i -  

The thermal-expansion behavior of the  f i l l e d  s i l lcone resin i n  honeycomb 
i s  shown i n  figure 27 f o r  the directions A ,  B, and C (defined ea r l i e r  i n  
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fig. 16). The coefficients of expansion are given on the figure for the region 
of crossover of the curves (YO0 F (294' K)) . It can be seen that the honeycomb 
orientation has an appreciable effect on the expansion behavior, except for the 
direction B, for which the expansion coefficient is about the same as that of 
the filled silicone resin itself (figs. 25 and 26). 

The expansion data on carbon-fiber-reinforced phenolic are presented in 
figure 28. This expansion curve has a rather peculiar shape, with the slope 
varying from 9.4 to 220 pin/in-q (17 to 400 pm/m-OK). The very steep slope 
around 500° F (533' K) is thought to be caused by a volume-expansion effect due 
to melting and flowing of the material at the outer surface of the specimen. 

The expansion data for t4e filled epoxy in honeycomb are presented in fig- 
ure 29. The honeycomb in this material has less influence on the thermal- 
expansion characteristics than the honeycomb fn the filled silicone resin. For 
the temperature region from about -looo to looo F (200° to,311° K), where the 
curves are nearly linear, the coefficient of linear expansion is about 
18 pin/in-q (32 p/m-%). 

Emittance of Phenolic-Nylon Chars 

The total normal emittances of the high-density and low-density phenolic- 
nylon chars were determined by a blackbody-comparison method which is described 
in appendix E. Since the exact test procedures were slightly different for the 
two chars, the emittance of each char w i l l  be discussed separately. 

Kittance of high-density phe-nolic-nylon char.- The disks of char were 
impregnated with polyalphamethylstyrene to facilitate handling and machining. 
This resin began to vaporize at about TOO0 F (644' K) and was completely vapor- 
ized after about 15 minutes at 1000° F (8100 K). 
specimens in the apparatus, they were evaluated without subsequent handling 
after evaporation of the resin. Temperatures reported are optical pyrometer 
measurements. Thermocouple-temperature measurements were attempted and deter- 
mined to be unreliable. Optical-pyrometer measurements were difficult to make 
because of nonuniformity in the temperature of the front surfaces of the speci- 
mens. The nonuniformity resulted from the char structure and the back-surface 
heating arrangement, which produced a temperature gradient through the specimen 
in the thickness direction. 

By the prepositioning of the 

A total of five specimens were fabricated and tested. The results are pre- 
sented in table 5 and figure 30. 
3/16 inch (0.48 em) thick, there was some evidence of volume emission and pos- 
sible transmission through the specimen as a result of its cellular structure. 
On subsequent specimens, a small amount of thermatomic carbon was carefully 
deposited in the surface cracks to reduce the subsurface emission. The emit- 
tance of the first specimen rose from about 0.70 at 15000 F (1088~ K) to 0.87 
at 2500° F (1643O K) and then decreased to 0.62 at 3300° F ( 2090° K) . 

During testing of specimen 1, which was 

Specimen 2 was approximately 1/8 inch (0.32 em) thick. The tests were 
terminated after two test points because the subsurface emission appeared to 
be too severe. 
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Specimen 3 was also about 1/8 inch thick. The emittance decreased from 
0.93 at 17000 F (12000 K) to 0.62 at 3400' F (2144' 9). 

For specimens 4 and 5 ,  the thickness of the specimens was reduced to about 
The emittance of specimen 4 1/16 inch (0.16 cm) to permit higher temperatures. 

rose from 0.77 at l7OOO F (WOOo K) to 0.89 at 3000' F (l922O K) and then 
decreaaed to about 0.80 at 4150° F (2560O K) . The emittance of specimen 5 was 
nearly constant at about 0.73 over most of the temperature range from l>OOo to 
3900° F (1088~ to 2423O K) . 
the data between different specimens. This scatter may be attributed largely 
to the difficulties in measurement presented by the peculiar structure of the 
char. Using the mean of the tests, the emittance can be seen from the faired 
curve in figure 30 to fluctuate from about 0.75 to 0.85 over the temperature 
range from 1300° to 41500 F (1088~ to 2560~ K) . At about 34000 F (2144O K) , 
scatter in the data is about 37 percent of the mean value. 

It can be seen that there is a large scatter in 

The assumption that the char is a graybody in behavior is discussed in 
appendlx E as being an inherent part of the method of measuring emittance. 
Analysis using the data of reference 3 and the methods of reference 4 indicates 
that the total-emittance data may be about 10 percent high as a result of errors 
due to the graybody assumption. 

Emittanceof low-density phenolic-nxlon char.- For the measurements of the 
emittance of the low-density ~henolic~hylon char, no resin impregnant was used 
on the specimens because its vaporization from the unrestrained disk specimen 
tended to separate the cells of the char, allowing serious subsurface emission. 
It was found unnecessary to add thermatomic carbon to the cracks in this char 
because the subsurface emission and transmission of radiation were not as severe 
a problem as they were with the high-density phenolic-nylon char. 

The total-normal-emittance data are presented in table 5 and in figuse 31. 
There is somewhat better agreement between different specimens of this material 
than for the high-density char. 
the specimens lies between 0.85 and 0.93 except f o r  the temperature range from 
about 2800O to 3kO0 F (1810~ to 21440 K) in which the emittance drops to a 
minimum of about 0.70. This decrease was due to the formation of a white resi- 
due on the surfaces of the specimens within this temperature range. This for- 
mation was attributed to impurities in the specimens which vaporized at the 
higher subsurface temperatures and condensed on the cooler top surfaces of the 
specimens. 
the heating disks was assured by past experience with the heating disks, and by 
the fact that alternating the heating disks from tungsten to tantalum to graph- 
ite did not affect the emittance in this temperature range or cause any change 
in formation of the white residue. 
not observed and the emittance returned to a value of about 0.9. 

The faired (mean) curve for the data for all 

That the impurities were in the specimen material rather than in 

Above 3400° F (2144' K) , the residue was 

Measurements were not obtained at temperatures above 3900' F (2420O K) 
because back-face destruction of the material and melting of the heating disks 
occurred in attempts to obtain higher temperatures. 
perature was obtained with a specimen of 1/8-inch (O.32-cm) thickness. 
to fabricate a thinner specimen failed because of the weak structure of the 
char. 

The 3900' F (2420O K) tem- 
Attempts 
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Density 

Bulkdensity of vi-in materials.- The bulk densities for the six ablation 
materials as a function of temperature are reported in table 6 and figures 32 
and 33. 
ments of density and calculations using the thermal-expansion data and the 
weight-loss measurements accompanying the enthalpy *ta. 
the density data incorporate not only the effective decrease in density due to 
thermal expansion but also the effect of decreased weight at higher temperatures 
due to the loss of volatile products from thermochemical reaction. 

The determinations by Melpar were made from room-temperature measure- 

(See table 1. ) Thus, 

The bulk-density data of SRI cu1 low-density phenolic-nylon and the filled 
silicone resin were determined from room-temperature density and the thermal- 
expansion data. 
excess of 150° F (339O K) for the low-density phenolic-nylon and 400° F (478O K) 
for the filled silicone resin. Above these temperatures, the specimen-to- 
specimen variation in the thermal-expansion data and weight-loss data that are 
variable with exposure time were considered to make the calculations 
meaningless. 

The density caleulations were not made for temperatures in 

The difference between the Melpar and SRI data on the low-density phenolic- 
nylon and filled silicone resin is no greater than 1 percent. 

- Density - . ... - - of phenogc-lzylon chars.- Measurements of true and apparent (bulk) 
densities at room temperature were made by SRI on the chars of both the high- 
density and low-density phenolic-nylon. Apparent density was determined by the 
standard technique of comparing the weights of a specimen in air and in water. 
Before immersion, the specimen surface was coated with a thin film of wax to 
prevent absorption of water, and the specimen was reweighed after immersion to 
assure that no water had been absorbed. The apparent densities for the high- 
density and low-density phenolic-nylon chars were 22.4 lb/ft3 (360 kg/d) and 
13.1 lb/ft3 (210 kg/m3), respectively. 

The true densities were determined by grinding samples into fine powder 
and using a standard immersion technique for powders, equivalent to the ASTM 
D153-54 method (ref. 5). 
91.7 lb/ft3 (1.47 Mg/d) and that for the low-density phenolic-nylon char was 
92.9 lb/ft3 (1.49 Mg/d). 

True density of high-density phenolic-nylon char was 

Porosity 

Measurements were made at the NASA Langley Research Center to determine 
the distribution of pore sizes and pore volumes in the low-density phenolic- 
nylon, the filled silicone resin, the filled epolry (excluding honeycomb), and 
the phenolic-nylon chars. Tests on the high-density phenolic-nylon and the 
carbon-fiber-reinforced phenolic indicated no open pores larger than 0.03 micron 
(0.03 pm) . 
make the measurements. 
shown in bar-graph form in figures 34 to 38. 
range of the pore diameters, given as the abscissa, and the volume of pores per 

A mercury-intrusion method described in appendix F was employed to 
The measurements were treatedto yield pore spectra, 

Each of the bars represents a 
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unit  volume of material  having the range of diameters i s  measured on the  ordi- 
nate scale. Two specimens were evaluated f o r  each material. 

The method of measurement is designed t o  reveal open-pore character is t ics  
However, the data on the materials containing Microballoons of the materials. 

and/or Eccospheres probably include the e f fec ts  of the  rupturing of some of 
these hollow spheres. 

Some additional studies on porosi t ies  of the chars w e r e  made by Southern 
Research Ins t i t u t e .  Total porosity was determined from the formula 

Pt - P 
P =  a- x 100 

where 

P porosity, percent 

t rue  density of the material Pt 

apparent density of the material Pa 

The apparent porosity determined for  high-density phenolic-nylon char was 75$, 
and tha t  for the  low-density phenolic -nylon char was 86%. 

Photomicrographs of the chars were made on two planes, one pa ra l l e l  t o  and 
the other perpendicular t o  the thickness direction of the  chars. The photo- 
micrographs a re  shown i n  figure 39 and figure 4 0 .  
mined i n  a plane pa ra l l e l  t o  the thickness direction a s  the arithmetic mean of 
pore-size measurements obtained by traversing the magnified section with a cal-  
ibrated eyepiece. The mean pore s izes  for  the high- and low-density phenolic- 
nylon chars were 24.2 microns (24.2 pm)  and 7.9 microns (7.9 pm), respectively. 
It i s  apparent from the photomicrographs tha t  the high-density phenolic-nylon 
char contains larger  pore s izes  and has a more discontinuous so l id  structure i n  
planes perpendicular t o  the  thickness direction than i n  planes pa ra l l e l  t o  the 
thickness direction. 

The mean pore s ize  was deter- 

Mechanical Properties 

Tensile and compressive s t ress-s t ra in  data and associated mechanical prop- 
erties w e r e  obtained on the six ablation materials, u t i l i z ing  equipment which 
i s  described i n  appendix G .  The mechanical properties of the materials a re  
presented i n  tables  7 t o  12 and i n  figures 4 1 t o  83. 
Young's modulus, ultimate strength, yield strength a t  0.2 percent offset ,  
Poisson's r a t io ,  and percent t o t a l  elongation and compression. 

These properties include 

Stress-strain The t ens i l e  s t ress -s t ra in  curves f o r  a l l  the materials 
a re  presented i n  figures 4 1 t o  50 and the compressive s t ress -s t ra in  cuves ,  i n  
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figures 51to 62. 
for two tests. 

In general, each stress-strain curve is an average curve 

In the Melpar tests, all loads were applied to the specimens with a cross- 
head rate of motion of 0.1 in/min (42 pm/s) . In the SRI tests, the crosshead 
rate was constant for a given specimen, but it varied for different specimens 
from 0.009 to 0.050 in/min (4 to 21 pm/s) for the low-density phenolic-nylon in 
tension and compression. It varied from 0.007 to 0.160 in/min (3 to 42 pm/s) 
for the filled silicone resin in tension, and from 0.030 to 0.323 in/min (1 to 
135 pm/s) for this material in compression. 

In the temperature region from -200° to -LOOo F (144' to 200° K), Southern 
Research Institute experienced considerable difficulty in performing the tensile 
tests on the filled silicone resin because of its brittle behavior. In gripping 
the material, it was found that the normal gripping force inevitably resulted in 
specimen fractures in the grips. When the gripping force was reduced, the 
specimens generally slipped out of the grips prior to rupture. Finally, the 
tensile-specimen gage section was reduced to approximately 1/4-inch-square 
(0.63-cm) cross section, and the ends of the specimens were reinforced with 
epoxy. With this arrangement, gage fractures were obtained at -2OOO F. 

Poisson's ratio.- Selected stress-strain data points, including lateral 
strain, are tabulated for the SRI evaluations in tables 8, 9, 11, and 12. 
Poisson's ratio which was calculated from these data is also shown in the same 
tables. Large variations in the values for Poisson's ratio from one tempera- 
ture to another and the large scatter in values at a given temperature make the 
data appear to be of questionable value. Part of the measured motions at the 
higher temperatures can be attributed to shrinkage of the specimen as a'result 
of thermal degradation. 

Melpar also attempted to measure Poisson's ratio, and some values are 
reported in table 7 on the filled silicone resin and the carbon-fiber-reinforced 
phenolic. The behavior of the materials made it difficult to obtain meaningful 
data. In the case of the honeycomb composites, the cell walls acted as 
restraints that prevented the materials from behaving as homogeneous bulk mate- 
rial, and therefore made it impossible to obtain meaningful values for Poisson's 
ratio. In all cases, the specimens fractured along the irregular lines formed 
by the cell walls. 

Yo-ung's modulus.- Young's modulus for tension and compression is shown for 
all the materials as a function of temperature in figures 63 to 73. 
considerable scatter in the data for a given temperature in many cases. The 
curves are drawn through the arithmetic mean of the set of values at each tem- 
perature. The scatter is generally greatest at temperatures below ambient 
temperature. 

There is 

Comparisons between the Melpar and SRI data for Young's modulus on the low- 
density phenolic-nylon can be seen in figures 64 (tension) and 65 (compression). 
Between -looo and 4000 F (200° to 478O K) the percentage difference between the 
tensile curves varies from 0 to 124%. 
ference is about 33%. 

At -2OOO F (144O K) the percentage dif- 
The magnitude of scatter is about the same in each set 



of data, being as high a s  about 47 percent a t  -200° F. 
agreement i s  i n  the  neighborhood of 200° F (366O K )  and -200' F where the per- 
centage differences a re  about 53 and 45%, respectively. 
an individual set of data i s  about 32% a t  -looo F ( 200° K) . 

For compression, poorest 

The largest  sca t te r  i n  

Comparisons between the Melpar and SRI data on Young's modulus on the 
f i l l e d  si l icone res in  can be seen i n  figures 66 (tension) and 67 (compression). 
For tension, the best  agreement i s  a t  ambient temperature, where the  percentage 
difference between the curves i s  about 34%. The difference increases a t  higher 
temperatures t o  about 87% a t  400' F (478O K )  and increases a t  lower temperatures 
t o  about 173% a t  -1000 F ( 200° K) . 
(255O K ) .  
much as  120% a t  -2OOO F ( 1 4 4 O  K ) .  
perature i s  as much as  160%. 

Scat ter  i s  as  much as 76$ (SRI) a t  Oo F 
For compression, the percentage difference between the  curves i s  as  

However, s ca t t e r  i n  data (SRI) a t  t h i s  tem- 

Ultimate strength.- Ultimate t ens i l e  and compressive strengths f o r  a l l  the 
materials as  a function of temperature are  presented i n  figures 74 t o  85, using 
the same manner of presentation as  t ha t  for' the  Young's modulus data. Agree- 
ment between the Melpar and SRI data fo r  these properties i s  somewhat be t te r  
than tha t  fo r  Young's modulus. 
shown i n  figures 76 (tension) and 77 (compression). 
percentage difference between the two curves i s  75% a t  350° F (450° K)  . 
t e r  i s  as  much as  48% (SRI) a t  -2OOO F ( 1 4 4 O  K ) .  
centage difference i s  30% a t  200° F (366O K) .  
a t  -2OOO F. 

The data fo r  low-density phenolic-nylon are  
I n  figure 76, the greatest  

I n  figure 77 the highest per- 
Scat- 

Scat ter  i s  as  much as 35% ( S R I )  

The ultimate-strength data fo r  the f i l l e d  s i l icone res in  a re  presented i n  

Maximum 
The percentage difference between 

figures 78 (tension) and 79 (compression). 
the curves i n  figure 78 i s  a maximum of about TO$ a t  300° F (422O K ) .  
sca t te r  i s  3O$ (Melpar) a t  400' F (478O K ) .  
the  curves i n  figure 79 i s  about 65% a t  -looo F ( 200° K )  and 6000 F (5890 K)  . 
Scatter i s  as much as  90 percent (SRI) a t  -200° F ( 1 4 4 O  K) . 

The percentage difference between 

In  some of the Melpar t e s t s ,  the l i m i t s  of extension and compression meas- 
urements were about 4 and 7$, respectively. These l imitations were imposed by 
the available t r ave l  of the recorder and by the measuring system. The l imita- 
t ions a re  indicated i n  the tables  ( tables  7 and 10). In  such cases the ultimate 
strength i s  defined as  the maximum s t r e s s .  
t h i s  report i s  defined a s  the m a x i m  s t ress ,  but i f  the maximum s t r e s s  occurred 
beyond 20% s t ra in ,  the ultimate strength i s  defined as  the s t r e s s  a t  20% s t ra in .  

Generally, the  ultimate strength i n  

I n  the course of machining t ens i l e  specimens of the f i l l e d  si l icone resin,  
Southern Research I n s t i t u t e  observed tha t  about 10% of the machined specimens 
had rather  large voids v is ib le  on t h e i r  surfaces and rejected them f o r  tes t ing.  
It seems quite l ike ly  tha t  there may have been some hidden voids i n  t h i s  mate- 
r i a l  which may have contributed t o  sca t te r  i n  the mechanical-property data. 
Other factors t o  which data scatter may be related w e r e  those of b r i t t l e  behav- 
i o r  a t  subzero temperatures and indications tha t  moisture content may af fec t  
the properties i n  some cases. I n  view of the possible existence of variables 
associated with these observed phenomena and a greater number of uncertainties 
a t  degradation temperatures, perhaps the agreement between the Melpar and SRI 
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data is as good as could be expected. More precise definition of the mechanical 
properties would probably require a more exhaustive testing program exploring 
more variables and including a larger number of tests at each temperature. 

CONCLUDING REMANS 

Thermophysical property data of the type necessary for the performance 
analysis and design of entry heat shields have been presented for six ablation 
materials. 
800° F (144O to TOO0 K) on virgin ablation materials, and from 1000° to p0Oo F 
(810~ to 3030° K) on thermally degraded materials (chars). 

The measurements were made over temperature ranges from -2000 to 

The materials evaluated over the lower temperature range were a high- 
density phenolic-nylon, a low-density phenolic-nylon, a filled silicone resin, 
the filled silicone resin in honeycomb, a carbon-fiber-reinforced phenolic 
(Narmco 4.028) , and a low-density filled epoxy resin (Avcoat 5026-39-HC G) . The 
properties determined for these materials were specific heat, thermal conduc- 
tivity, linear thermal-expansion coefficient, density, and tensile and compres- 
sive stress-strain. 
temperature. 
chars formed from thermal degradation of the high-density and low-density 
phenolic-nylon. The properties measured were specific heat, thermal conduc- 
tivity and total normal emittance. 
ments were made at ambient temperature. 

In addition, porosity measurements were made at ambient 
The materials evaluated over the higher temperature range were two 

In addition, density and porosity measure- 

In an attempt to establish the reproducibility of the thermophysical prop- 
erties, the results of two independent evaluations of the properties for the 
low-density phenolic-nylon and the filled silicone resin have been compared. 
This comparison reveals differences (as much as 1708) between the two sets of 
data too 1arge.to be reasonably attributed to cumulative errors in techniques 
of measurement. 
parable in magnitude with the difference between the sets of data also indi- 
cates erratic behavior of the materials that may be due to several variables in 
the thermal and environmental histories of the measurements. 
such as voids within a material may be important factors in causing scatter in 
some cases. 
and the scatter in each set of data are generally greatest at temperatures 
around and below -looo F (200° K) and above 300° F (4220 K) . 
in the materials observed at cryogenic temperatures and physical and chemical 
changes accompanying the thermal degradation processes at temperatures above 
300° F ('-1.22~ K) appear to be primarily responsible for the largest variations 
in values of the thermophysical properties. 

Scatter in a set of data (as much as 160%) in mitny cases com- 

Physical variables 

The percentage differences between the two independent sets of data 

Physical changes 

This compilation of thermophysical property data for several potential 
heat-shield materials, representative of the principal types of ablation mate- 
rials presently being considered for thermal-protection applications, should 
provide considerable insight to the physical behavior of the materials over the 
practicable range of temperatures. 
studies concerning theoretical ablation models. 

It should also be useful data for analytical 
However, the user of the data 



should be cognizant of the f ac t  t ha t  thermophysical properties of ablation mate- 
r i a l s  are  not uniquely defined a t  temperatures which produce chemical or phys- 
i c a l  ins tab i l i ty .  It appears, from the property measurements reported here, 
tha t  there a re  several  variables which would have t o  be known and controlled i n  
order t o  obtain data repeatable t o  within be t t e r  than 25 t o  175% f o r  a l l  the  
properties over the given ranges of  temperatures. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., May 6, 1965. 
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APPENDIX A 

CONVERSION O F  U.S. CUSTOMARY UNITS TO SI UNITS 

The International System of Units (SI )  was adopted by the Eleventh General 
Conference on Weights and Measures, P a r i s ,  October 1960, i n  Resolution No. 12 
( re f .  1). Conversion factors  f o r  the units used herein a re  given i n  the fo l -  
lowing table:  

Physical 
quantity 

Temperature 

Pressure 

Temperature-rise r a t e  

Length 

Density 

Thermal f lux  

Temperature differenct 

Pressure 

Thermal expansion 

Length 

Length-time r a t i o  

Calorimeter constant 

Force 

Heat capacity 

Specific heat 

Thermal conductivity 

J.S. Customary 
Unit 

OF 

!si = lb f / in2  

O F / h r  

inch 

lbmIft3 

Btu/ f t - s e c 

OF 

atmosphere 

pinlin-OF 

micron 

in/min 

Btu/’?F 

lb f  

Btu/lbm 

xu/ Ibm-9 

B t u l f t - h r - 9  

Conversion I 
f ac to r  

(*I I 
I 

SI unit 

6.895 x 103 

519 

0.0254 

16.02 

1.134 X lo4 

519 

1.013 x 105 

915 x 10-6 

10-6 

4.233 X 

1899 

4.448 

2.324 x 103 

4.184 x 103 

1 * 730 

+ 459.67)5/9 degrees Kelvin (OK) 

newtons per square meter (N/m2) 

degrees Kelvin per  hour (OK/hr)  

meters ( m )  

kilograms per cubic meter (kg/d) 

watts per square meter (WIm2) 

aegees Kelvin (OK) 

newtons per square meter (N/m2) 

meterslmeter-degrees Kelvin (m/m-OK) 

meter (m) 

m e t e r s  per second (m/s) 

joules per  degree Kelvin (J/OK) 

newtons (N) 

joules per kilogram (Jlkg) 

joules/kilogram-degrees Kelvin (J/kg-% 

wattslmeter-degrees Kelvin (W/m-OK) 

%t ip ly  value given i n  U.S. Customary Unit by conversion f ac to r  t o  obtain equivalent 
value i n  SI u n i t .  

Prefixes t o  indicate multiples of un i t s  are as  follows: 
- 

giga ( G )  109 
mega (MI 106 

kilo (k) 103 I m i l l i  ( m )  

micro (PI 



APPENDIX B 

APPARATUS AND mST PROCEMTRE FOR MEA- OF SPECIFIC HEAT 

Measurement of Specific Heat From -2OOO to 8000 F (144' to TOO0 K) 

Methods and qpa-atuslMelpar). - Specific-heat determinations at Melpar 
The apparatus is designed to are made by means of a Bunsen 'Ice calorimeter. 

permit measurement of the enthalpy of materials over the temperature range from 
-3200 to 1750° F (77' to 1230° K). 
heat can be calculated. 

From enthalpy measurements, the specific 

A sketch of the ice calorimeter is shown in figure B1. The calorimeter 
consists principally of a double-wall pyrex vessel with d r y  C 0 2  gas between the 
walls. 
tilled water (F) over the top of the pool of mercury, a hollow copper well ( A )  
to receive the specimen, and an array of copper fins (J) which serve as the 
heat-exchange system for the copper well. The ice calorimeter measures the 
heat capacity of the sample by monitoring the volume change in a closed system 
of ice and water resulting from the heat exchange between the sample and the 
system. 

The inner vessel (H) contains a mercury reservoir (K), outgassed dis- 

In practice, the calorimeter is submerged in a 32O F (273O K) ice bath, 
and once thermal equilibrium is established, a mantle of ice is frozen around 
the fins. 
illary (E)  to an external reservoir. 
the expelled mercury is weighed. 
well, ice is melted, and mercury is drawn into the system from the external 
reservoir. When thermal equilibrium is again established, a measure of the 
amount of mercury drawn into the system provides for calculation of the heat 
content of the sample. 

As ice freezes on the fins, mercury is expelled through a small cap- 
When thermal equilibrium is reestablished, 

Then a heated specimen is dropped into the 

Specimens are heated by means of a platinum resistance furnace with a large 
silver core which serves to extend the length of the uniform-temperature zone. 
The copper well is extended out of the i ce  bath by means of a thin-wallmonel 
tube which is connected by a vacuum seal to the furnace. The low conductivity 
of the monel tubing minimizes conductive heat leakage into the copper well. A 
gate prevents radiative heat transfer from the furnace to the calorimeter well. 
The initial specimen temperature is measured using a platinum/platinum- 
10-percent rhodium thermocouple at high temperatures and an iron-constantan 
thermocouple at low temperatures. 

Temperatures below ambient are obtained by placing the specimen inside a 
liquid-nitrogen-cooled chamber which replaces the furnace above the calorimeter. 
Specimen temperatures intermediate between liquid-nitrogen temperature and 
ambient temperature are obtained by using the cooling chamber in conjunction 
with a small resistance heater wound around the sample container. For the meas- 
urements at temperatures below ambient, the freezing process is reversed - the 
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sample causes additional freezing on the  mantle i n  the  calorimeter and expels 
mercury from the system. 

Specimens and procedure (Melpar) . - Cylindrical specimens 0.5 inch (1.27 cm) 
i n  diameter and 1 inch (2.34 cm) i n  length a re  evaluated by the  following 
procedure: 

a.  The i c e  calorimeter i s  brought t o  equilibrium with the  i c e  bath a t  32' F 
(273O K ) .  
assure t h a t  any heat t ransfer  w i l l  be adiabatic.  

T h i s  temperature i s  established t o  within 1-0.02O F ( k O . O l o  K)  t o  

b. A mantle of i ce  i s  frozen on the  f i n s  of the  calorimeter, and the  system 
i s  allowed t o  a t t a i n  equilibrium. 

c.  The amount of mercury i n  t h e  external reservoir i s  weighed t o  an accu- 
racy of 0 .1  mg and the  weight i s  recorded as  M 1 .  

d. The tes t  specimen i s  placed i n t o  a previously weighed container and the  
weight of t he  sample i s  determined t o  an accuracy of 0 .1  mg. 

e. The specimen container, with the  sample inside,  i s  suspended i n  the  
furnace (cooling chamber) and maintained a t  t he  desired t e s t  temperature f o r  
30 minutes. 
heat t ransfer  i n to  and out of the  container. 

During t h i s  t i m e  the  furnace i s  purged with helium t o  provide good 

f .  The specimen container, with the  specimen inside,  i s  then allowed t o  
f a l l  f ree ly  i n t o  the  calorimeter well and t o  remain there  f o r  30 minutes t o  
assure the  establishment of equilibrium. During t h i s  t i m e  helium i s  forced t o  
flow up the central  well  t o  reduce the  collection of w a t e r  vapor and t o  provide 
good heat t ransfer  t o  the  copper f in s .  

g. The weight of mercury i n  the  external reservoir i s  again recorded as M2. 

h.  The mercury-weight equivalence M 3  of the  empty specimen container i s  
determined a t  each specimen-test temperature. These measurements minimize e r rors  
due t o  radiat ive losses from'the f a l l i n g  specimen container and a l so  separate 
the  portion of t he  heat exchange due t o  the  container i t se l f .  

i. Periodically,  a cal ibrat ion t e s t  i s  made on a National Bureau of 
Standards A120 cal ibrat ion specimen over the  range of representative tempera- 
tures. 
Thus, any er rors  i n  t h e  heat t r ans fe r  of the  system a re  determined and applied 
as correction factors .  

The ca ? ib ra t ion  data are analyzed by using the data of reference 6. 

j. Enthalpy H of t he  tes t  sample i s  calculated by the  following equation: 
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where 

Mo mass of Hg displaced due to heat transfer from (to) the sample, lb (kg) 

M1 mass o f  Hg in external reservoir before specimen drop, lb (kg) 

M2 mass of Hg in external reservoir after specimen drop, lb (kg) 

M3 mass of Hg displaced due to heat transfer from (to) the sample container 
itself, lb (kg) 

k calibration constant determined from tests on calibration specimen and 
NBS data on calibration specimen, Btu/lb (J/kg) 

M mass of test specimen, lb (kg) 

&cause of the nature of the test method, the enthalpy of the sample is 
referenced to 3 2 O  F (273O K) . 
the enthalpy curve for small enthalpy and temperature changes. 

The specific heat is determined as the slope of 

Methods and apparatus @RI)_.- Specific-heat measurements to 8000 F (TOOo K) 
were made by using a dry-type adiabatic calorimeter which is described in con- 
siderable detail in reference 7. It is described briefly here. 

\ 

The calorimeter consists principally of a covered brass cup, mounted on 
cork supports in a silver-plated copper jacket which is immersed in a bath of 
ethylene glycol. 
by chilled trichloroethylene flowing through a copper cooling coil immersed in 
the bath. For measurements at temperatures above ambient the bath is heated by 
a nichrome wire heater. 

For measurements below ambient temperature, the bath is cooled 

Uniform bath temperature is provided by a stirrer. 

Copper-constantan thermocouples differentially connected between calorim- 
eter cup and jacket indicate the temperature difference between the cup and the 
bath, allowing a difference of 0.03O F (0.02O K) to be detectable. During tests 
this difference is maintained to within 0.13' F ( 0 . 0 8 ~  K) . Absolute-temperature 
measurements of the cup are determined by series-connected thermocouple junc- 
tions located in wells in the bottom of the cup. All the thermocouple measure- 
ments are made by using a potentiometer in conjunction with a sensitive 
galvanometer. 

A tubular furnace or a cold box is used to bring the specimens to the 
desired temperatures. By pivoting the equipment on a common post near the cal- 
orimeter, the specimen is transferred to a position directly over the calorim- 
eter cup and is released by external triggering when the temperature has been 
stabilized. Adiabatic conditions are maintained during each test by manual 
adjustment of the cup guard-bath temperature. 

A supplementary furnace is used to achieve rapid temperature-rise rates 
when desirable. 
mass to render it insensitive to minor variations in line voltage and air 

The normally used furnace is purposely designed with a large 
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currents. The supplementary furnace, mounted adjacent to the one normally 
used, provides rapid radiant heating of the specimen to within l5O F (80 K) to 
200 F (1l0 K) of the desired test temperature. Then it can be rapidly trans- 
ferred to the more massive preheated furnace for heat soaking to attain 
equilibrium. 

Specimens . - Test specimens evaluated at temperatures 
above 300° 3/4-inch (1.9-em) cubes. For measurements 
below 3000 F the specimen size is varied to provide the specimen weight neces- 
sary to yield a change in calorimeter-cup temperature large enough to permit 
reliable evaluations. 

A calorimeter constant, previously determined by using an electrolytic cop- 

The enthalpy is determined as a function of the initial speci- 
per specimen of known specific heat, is used in the calculation of the enthalpy 
of the specimen. 
men temperature and then referred to an 850 F (303' K) base. 
the specimen at any initial temperature is given by 

The enthalpy of 

where 

K 

W S  specimen weight, lb (kg) 

T1 

T2 

calorimeter constant, 0.2654 Btu/OF (504.0 J/OK) 

initial cup temperature, 9 (OK) 

final cup temperature, OF (OK) 

The enthalpy is referred to the common base temperature of 85O F (303O K) by 

where 

enthalpy above the reference temperature of 85' F (303O K) , Btu/lb (J/OK) 
initial specimen temperature, %' (OK) 

H85 

T3 

The reliability of the apparatus has been confirmed by making measurements 
on a sapphire specimen of lmom specific heat. 
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Specific Heat Measurements t o  5000° F (30300 K )  a t  SRI 

Specific heat a t  temperatures from 10000 t o  5000° F (810~ t o  3030° K) a r e  

The specimen i s  enclosed i n  a drop basket 
determined using a drop-type i c e  calorimeter which i s  described br ie f ly  here 
and more completely i n  reference 8. 
and heated by means of a thin-walled tubular resistance heater made from graph- 
i t e .  After the specimen i s  brought t o  the desired t e s t  temperature, it i s  
dropped in to  an i ce  calorimeter i n  which the cup i s  surrounded by an i c e  mantle. 
A s  the i c e  melts, the volume change draws mercury from a calibrated manometer 
tube. The heat capacity of the specimen i s  determined from the mercury d i s -  
placement. A f l u t t e r  valve immediately above the calorimeter cup prevents 
radiation losses from the specimen up the  drop tube. Helium, argon, or nitrogen 
environment can be used i n  the furnace. 

Calibration f o r  t h i s  apparatus i s  similar t o  tha t  described fo r  the Bunsen 
i ce  calorimeter of Melpar. 
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r 

1 
A - Calorimeter Well 
B - Gate 
C - Helium Tube to Calor- 

D - Dry CO Fill Tube 
E - Mercurg Line 
F - Dis t i l l ed  Air-Free Water 
0 - Outer Pyrex Vessel 
H - Inner Pyrex Vessel 
I - Ice Mantle 
J - Copper Radiation Fins 
K - Mercury Reservoir 
L - Dry C02 Atmosphere 

imeter Well 

ri 

Figure B1.- Bunsen i c e  calorimeter f o r  measurement of heat capacity (Melpar) 
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APPAFWKJS AND TEST PROCEDURE FOR MEASUREMENT OF TKERMCU; CONDUCTIVITY 

Measurement of Thermal Conductivity to 8000 F (TOO0 K) 

Methods and apparatus (Melpar) . - A radial-heat-flow technique is utilized 
in the measurement of thermal conductivity of thermally insulative materials. 
The temperature range extends from the temperature of liquid nitrogen to about 
11000 F (866' K). The apparatus consists principally of a control heater for 
establishing a radial temperature gradient in the sample, heating and cooling 
environments for the sample, and the necessary electrical and temperature- 
measuring equipment associated with the radial-heat-flow technique. 

The sample is heated from its center with a thin rod heater. Figure C1 
shows a cross section of the apparatus. The center portion of the heater wire 
is provided with voltage taps so that the exact power over the center portion 
of the heater may be determined. 
at different dlstances from the center of the sample, parallel to the central 
heater. An outer circumferential heater provides for heating the sample to 
make measurements at elevated temperatures. 

The sample is provided with two thermocouples 

For temperature measurements from slightly above ambient temperature down 
This chamber con- to -320° F ( 7 7 O  K), a cooling chamber surrounds the sample. 

sists of a material packing of high specific heat which is cooled to the 
desired temperatures by the repeated application of liquid nitrogen. 
amount of insulating packing is varied in order to achieve various temperatures 
intermediate between ambient temperature and -320° F ( 7 7 O  K) . 

The 

Specimens and procedure (Melpar) .- The specimen is made up from five disks 
Each disk is 1 inch (2 .5  em) in thick- stacked together as shown in figure C1. 

ness and 1 inch in diameter. The central disk is the test specimen; the two 
disks on each end of it act as thermal guards to assure radial heat flow. Holes 
are machined through the centers of the disks to allow insertion of the central 
heater, and two holes are machined at radial distances '1 and r2 to permit 
placement of thermocouples to measure the radial temperature gradient. 
temperatures at the two radial distances are measured by means of two calibrated 
iron-constantan thermocouples. 

The 

An ice-bath reference junction is used. 

When testing materials that exhibit asymmetric properties, the heat flow 
is measured separately along each principal axis of anisotropy. 

For a typical thermal-conductivity determination, the procedure followed 
is given below: 

a. The radial distances r1 and r2  are measured accurately before the 
stack is formed. 
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b. The f ive  disk specimens, with the  t e s t  specimen i n  the  center are then 
stacked with t h e  central  heater  along the  central  axis .  The two cal ibrated 
thermocouples are placed through the  thermocouple holes with t h e i r  hot junc- 
t i ons  res t ing  i n  the  central  plane of the tes t  specimen. The stack of disks i s  
then wrapped i n  copper f o i l  and inser ted in to  the tes t  chamber with the  cent ra l  
2-inch (5.08-cm) tes t  length coinciding with the  2-inch constant-temperature 
zone i n  the  t e s t  chamber. 

c. Liquid nitrogen i s  introduced in to  the  low-temperature chamber f o r  the 
measurements below ambient temperature. A f t e r  the  specimen reaches thermal 
equilibrium with the  cooling environment, t he  central  heater i s  energized t;o 
produce the lowest desired steady-state temperature. By sui table  monitoring 
of the  l iqu id  nitrogen, other temperatures below ambient a re  obtained. A t  each 
temperature, readings of voltage, amperage, and temperatures are  recorded. 

When the  low-temperature measurements have been completed, the  tes t  speci- 
men i s  examined f o r  permanent shrinkage. If shrinkage has occurred, sui table  
corrections a re  introduced i n t o  the  calculation of thermal conductivity. The 
specimen array i s  then reassembled and placed i n  the furnace, and measurements 
are made a t  temperatures above ambient, going from lower t o  higher temperatures. 

d. A s  an a l te rna te  t e s t  method, the  temperature chamber may be preset  t o  
a desired t e s t  temperature, the  specimen package inser ted i n t o  the  chamber, 
and the  central  heater energized. The temperature gradient i s  then monitored 
u n t i l  it becomes constant, a t  which time data are recorded. 

Thermal conductivity K i s  calculated by the following equation: 

'2 
rl 

Q 2n - 

2nIAT 
K =  

where 

Q rate of heat flow t o  t e s t  zone, Btu/hr (watts)  

AT temperature difference between '1 and r2, ?F (OK) 

L length of t he  tes t  zone, f t  ( m )  

Test methods and apparatus (SFU).- Thermal-conductivity measurements t o  
1 0 0 0 ° ~ ( ~ ~ - a r e  made with a guarded hot p l a t e  which i s  a slight modifica- 
t i o n  of the standard ASTM ~177-63 design ( r e f .  9 ) .  
b r i e f ly  here and more completely as the  3-inch (7.6-cm) apparatus i n  re fer -  
ence 7. The apparatus consists pr incipal ly  of a central  heater p l a t e  sur- 
rounded by a guard heater, each separately controlled. The guard heater  i s  
maintained a t  t h e  same temperature as the  cent ra l  heater t o  assure t h a t  a l l  
heat flow i s  normal t o  the  specimen surfaces. The temperature difference 
between the  guard and cent ra l  sections i s  monitored by means of series-connected 

This apparatus i s  described 
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differential thermocouple junctions. The plate containing the central and 
guard heaters is sandwiched between layers of sheet insulation, the hot-face 
thermocouples, the specimen, cold-face thermocouples, more sheet insulation, 
copper plates, and finally, cold sinks to dissipate the heat. In addition to 
the thermocouples in contact with the specimen, thermocouples are located in 
the central heater and in the outer copper plates to monitor their temperatures. 
The thermocouple measurements .are made by using a potentiometer in conjunction 
with a sensitive galvanometer. 

The assembly is arranged to operate with the specimen placed in the appa- 
ratus horizontally. In order to maintain good contact pressure, a screw-loading 
device holds the sandwich assembly together. 

To obtain mean sample temperatures above ambient temperature, water is 
circulated through the copper tubing of the heat sink. For mean sample temper- 
atures below ambient temperature, liquid nitrogen vapors are circulated through 
the copper tubing. 

The thermal conductivity K is calculated from the following equation: 

(c2) 

where 

Q 
X . average thickness of specimen, in. (cm) 

A 

rate of heat flow, Btu/hr (watts) 

area of central-heater section, ft2 (m2) 

m sum of temperature gradients across the two samples, 9 (%) 

Theoretically, the heat input Q should divide, with half the input 
flowing through each sample. 
instead, there is a slight unbalance in the heat flow. 
permits a calculation of the arithmetic average for the two samples. 

In practice this exact division rarely occurs; 
Equation (C2) then 

Thermal Conductivity to fsOOOO F (3030° K) 

Test methcds and apparatus.- The method applied by Southern Research 
Institute in obtaining thermal-conductivity data on chars to p O O o  F (3030° K) 
is a modified radial-heat-flow technique which was developed primarily for 
determination of the conductivity of pyrolytic graphite in the "A" and "C"  
directions. The apparatus consists of a hi&-temperature furnace which sur- 
rounds the specimen assembly, a radial-heat-flow assembly that includes a water 
calorimeter, and temperature-measurement apparatus. 

26 
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The furnace provides an isothermal hot zone no less than 4.75 inches 
(12.1-cm) long, with at least a 3 to 1 ratio of the length of the hot zone to 
that of the m a c e .  The furnace is designed to withstand temperatures up to 
56000 F (3370° K) and to provide inert-atmosphere protection for the specimen 
and graphite components of the furnace. The furnace contains ports that provide 
f o r  thermocouple or optical temperature measurements at selected points in the 
specimen. 

A schematic of the specimen configuration used in making conductivity meas- 
urements is shown in figure C2 and the specimen dimensions are shown in fig- 
ure C3. Since pyrolytic graphite has a thermal-conductivity value for the "A" 
direction of about 200 times that for direction "C" at 300° F (532O K) and 
about 60 times that for direction "C" at 3500° F (2200O K), the strips of this 
material (see fig. B3) assure an evenly distributed flow of heat across the 
faces of the specimens. 

Pr io r  to the machining of the specimens, the char was impregnated with 
polyalphamethylstyrene to provide mechanical stability. A sample was weighed 
before the impregnation, after the impregnation, and after a 15-minute heat soak 
at 1000° F (8100 K) to determine if the impregnant had fully vaporized. 
evaluations verified that no measurable residue was left. 

These 

The water calorimeter (see fig. C2) passes axially through the specimen 
assembly and provides a heat sink to create an axial temperature gradient. In 
addition, it provides for measurement of the absolute value of the heat flow 
for a 0.5-inch (l.27-cm) gage section of the specimen. 
determined from thermocouples mounted 0.5 inch apart in the calorimeter water 
stream to determine the temperature rise of the water due to the flow of heat 
through the gage section of the specimen. 

This measurement is 

Calculations.- The heat f l o w  through the 0.5-inch (l.27-cm) gage length 
of the specimen assembly is obtained from the following equation: 

where 

Q 

M 

rate of heat flow, Btu/hr (watts) 

rate of water flow, lb/hr (kg/s) 

C specific heat of water, Btu/lb-- (J/kg-%) 

N C  temperature difference between the two thermocouples inside the calo- 
rimeter tube, 9 (?IC) 

The thermal conductivity K of the char is calculated from the following 
equation: 
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_ _  QL 

where 

L distance over which ATs is measured, ft (cm) 

A area through which Q is flowing, ft2(m2) 

AT, temperature difference between the two temperature-measurement cavities 
in the specimen, ?F (OK) 

For temperatures below 2000° F (1365O K), ATs was measured with thermo- 

For temperatures above 2000' F, 
couples, and the specimen mean temperature was determined as the arithmetic 
average of the outer and inner thermocouples. 
measurements were made with an optical pyrometer by sighting through a right- 
angle mirror device into the temperature-measurement cavities, shown in fig- 
ures C2 and C3. Due to radiation losses resulting from the large ratio of 
depth to diameter of these cavities, the observed temperatures were lower than 
the actual temperatures of the corresponding isothermal +lanes of the specimen. 
However, unless ATs was very large, the error was about the same for each 
cavity, and therefore ATs could be measured quite accurately as the differ- 
ence between the two observed values. Then by assuming that the temperature 
gradient through the specimen material was linear (see fig. C4),  the mean tem- 
perature could be calculated from a true outer-face temperature measurement 
(through a furnace port) and a knowledge of the locations of the temperature- 
measurement cavities in the specimen. The calculation of mean temperature 
(fig. C 4 )  is based on the properties of similar triangles where the vertical 
legs of the triangles represent temperature differences and the horizontal legs 
represent distances between points of measurement. For simplification, both 
temperature-measurement cavities are shown in one strip of the specimen, whereas 
they actually are in two strips located in opposite positions in the specimen 
assembly (see fig. C2). 
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A - Specimen ( 5  stacked)  
B - Cent ra l  Heater 
C - P o t e n t i a l  Pick O f f  
I) - Copper Shie ld  
E - Thermocouple Holes 
F - I ron  Leps of Thermocouples 
G - Thermocouples( Iron-Constantan) 
H - Heater 
K - Insu la t ion  
L - Constantan Legs of Thermocouples 
M - Weld J o i n t  for Constantan Legs 
N - C o m n  Constantan Lead 
P - I ron  Leads 
R - P o t e n t i a l  Leads 
s - Plug 

Figure C1.- Cross section of  r a d i a l  heat-flow thermal-conductivity apparatus (Melpar). 
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Heat 

Graphite cylinder 

Themtomic carbon 
Water calorimeter 

Temperature - 
measurement 
holes 

Heat flow Heat flow 

Pyrolytic graphite 
strips with 'c' 
direction through 
thickness 

1 

Heat 
flow 

Figure C2.-  Strip-specimen configuration for thermal-conductivity measurements (SFCC). 
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0.070 in.(0.179 cm) D i a .  f 

1/16 in.(0.1% cm> 

3/32 in.(o.238 cm) D i a .  f (1/32 in. (0.079 em)> 
Ter!iperature+iieasrzel;lent 

hole 

1/2 in.(1.27 cm) 

Figure C j .  - Sketch of thermal-conductivity strip specimen (SRI) . 
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Edge view of h i g h d e n s i t y  
phenolic-nylon char with 
assmied temperature p r o f i l e  

Edge view of low-density 
phenolic-nylon char with 
assumed temperature p r o f i l e  

TOF - 'M TOC - TIC 

.125 .125 

I- 

Figure C4.- Determination of mean temperature for chars (SRI). 
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APPARATUS AND TEST PROCEIXJRE FOR MEASUREMENT OF TI-IERMAL EXPANSION 

Thermal Ekpansion t o  800° F (TOO0 K) 

Methods -and asparatus (Melparl. - The coefficient of l inear thermal expan- 
sion of materials- a t  temperatures between -320° F (77O K) and 22000 F (1478O K) 
i s  determined a t  Melpar by using a quartz dilatometer. 
apparatus i s  shown i n  figure D1. Any expansion or contraction of the speci- 
men (R) is  transferred t o  the d i a l  indicator (M) by the fused quartz tube (P) 
which has closed ends. The d i a l  indicator i s  capable of showing a change i n  
sample length of 0.0001 inch (2.5 pn).  
greater than 510 psi  (69 W/d) upon the specimen. 

A schematic of the 

The d i a l  gage exerts a pressure no 

Shown on the l e f t  side of figure D1 i s  a schematic of the temperature 
chamber which provides for heating or  cooling the sample. 
zone within the chamber is  designed t o  be uniform t o  within S O  F (fro K )  from 
the center t o  either the top o r  bottom. A control thermocouple is  provided a t  
the center of the t e s t  zone t o  monitor the t e s t  temperature. 

A 3-inch (7.6-cm) 

Specimens- and procxdure (Melpar1.- The specimen length ranges from 2 t o  
3 inches (5- t o  8 cm) depending upon the expansion characteristics of the mate- 
r i a l  under t e s t .  The ends of the specimen are cut perpendicular t o  the a x i s  of 
the specimen. The procedure for  a typical t e s t  i s  as  follows: 

a. The length of the sample i s  accurately determined a t  room temperature. 

b. The specimen i s  inserted into the dilatometer, and a thermocouple i s  
mounted In the assembly with i t s  hot junction against the center of the sample. 
The entire assembly i s  inspected t o  assure freedom of movement of both the 
Inner quartz transmission tube and the d i a l  indicator. The d i a l  indicator i s  
adjusted t o  zero. 

c. The quartz dilatometer with specimen is  placed into the temperature 
chamber. 

d. Testing i s  s tar ted with the low-temperature range f i r s t .  Liquid n i t ro-  
gen i s  introduced into the cooling jacket, and the sample at ta ins  liquid- 
nitrogen temperature. The different ia l  expansion AI, is  recorded. The sample 
temperature i s  then increased t o  the next desired value by energizing the heater 
and establishing a new s ta te  of equilibrium. 
recorded a t  the new temperature. 
temperature has returned t o  room temperature. 

The different ia l  expansion i s  
"his process i s  repeated u n t i l  the sample 

I f  the sample length has not returned t o  i t s  i n i t i a l  value, it is replaced 
For meas- by a new sample before measurements are made a t  higher temperatures. 

urements a t  temperatures above ambient, the sample i s  heated t o  each tempera- 
ture  i n  an ascending sequence. If it is  anticipated that the material under 
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study w i l l  exhibit hysteresis in expansion characteristics, the test sequence 
is reversed, going from the highest temperature to lower temperatures. 

e. A s  an alternate test method, the temperature chamber may be preset at 
a desired test temperature and the dilatometer may be inserted into the chamber 
at this temperature. The sample temperature then may be monitored and the dif- 
ferential expansion recorded upon the attainment of equilibrium conditions. 

The coefficient of linear thermal expansion a is calculated from the 
following equation: 

ALl 
- + aqt a =  

- To) 

where 

ALl 

L 

T 

TO 

"qt 

differential change in length of specimen and quartz outer tube at 
test temperature T, in. (m) 

initial length of test specimen at room temperature, in. (m) 

test temperature, ?I? (OK)  

ambient temperature, ?E' (OK) 

linear coefficient of thermal expansion of quartz outer tube at test 
temperature T 

Apparatus and test procedure.- Thermal-expansion measurements to 1000° F 
(8110 K) are made at S& by utilizing quartz-tube dilatometers. The apparatus 
is described only briefly here. It is described in more detail in reference 7. 
The tubes and dial gages are mounted on a single arm to facilitate the testing 
of two samples simultaneously. The dial gages are graduated in 0.0001-inch 
(2.5-pm) divisions with a total range of 0.100 inch (2.5 mm) for specimens with 
low coefficients of expansion, and 0.500 inch (1.27 cm) for specimens with 
higher coefficients. 

For measurements above ambient temperature, each dilatometer is heated by 
an individual heater. For measurements below ambient temperature the dilatom- 
eters are cooled by a Dewar flask filled with dry ice and trichloroethylene. 
The dilatometer tubes are submerged in the flask to a depth sufficient to cover 
the specimens. Iron-constantan thermocouples are placed at each end and at the 
center of each specimen to monitor the temperature throughout the specimens. 
The specimens are nominally 3 inches (7.6 cm) in length with the ends rounded 
on a 3-inch (7.6-cm) diameter. 

The reliability of the apparatus has been checked by making measurements 
on nickel, quartz, and graphite to compare with values in the literature. Good 
agreement was found between values measured with this apparatus and those 
reported in the literature. 
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FLJFtNAC E 

Legend 

A - Liquid-nitrogen i n l e t  
B - Bel l  j a r  
C - V~cuum por t  
D - A i r  vent 
E -Meta l  dewar 
F - Heater winding 
G - Copper can 
H - Metal housing 
K - Insu la t ion  

DILATOMETER 

L - Samplz a l i n z r  (qi:.artz) 
M - Dial indicator  
N - Quartz tube 
P - Quartz tube 
R - Specinen 
S - Ther-mocovple 
T - Irxar dial-gauge holder 
U - In.Jar quartz-tube holder 

Figure D1. - Apparatus f o r  measurement of thermal expansion (Melpar) . 
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APPARATUS AND TEST PROCEDURE FOR MEASuRENENT OF MTTANCE 

The apparatus and methods used by Southern Research I n s t i t u t e  t o  measure 
t o t a l  normal emittance a re  described i n  d e t a i l  i n  reference 8. 
described br ie f ly  below. 

They are  

Emittance i s  measured by comparing the energy received by a radiometer 
from the sample t o  tha t  received from a blackbody cavity maintained a t  the same 
temperature. The equipment consists pr incipal ly  of an induction heating fur- 
nace, a radiometer, and temperature-measurement equipment. A cross section of 
the apparatus i s  shown i n  figure E l .  
t e r  of a f l a t  concentrator induction c o i l  (2)  by a zirconia cylinder f i l l e d  with 
f ine  zirconia grog and tungsten wires (3) .  
cylinder f i l l e d  with coarse zirconia grog ( 4 ) .  
specimen from di rec t ly  above through a water-cooled tube ( 6 ) .  A water-cooled 
valve (7) i s  used t o  blank off the specimen from the radiometer. Optical- 
temperature readings a re  taken through the main port  (8 ) , ,  which may be pushed 
i n  t o  allow viewing of the specimen by way of a right-angle mirror ( 9 ) .  When 
radiometer readings a re  being taken, the port  i s  pulled out of the l i n e  of 
s ight .  Direct viewing of t he  specimen i s  permitted by an auxiliary port (10). 
The portion of the furnace (11) above the specimen i s  water cooled t o  eliminate 
the reradiation of energy back onto the specimen surface. The flrrnace i s  cap- 
able of maintaining a vacuum. 

The specimen (1) i s  supported i n  the ten- 

The zirconia cylinder r e s t s  on a 
The radiometer ( 5 )  views the 

The radiometer i s  calibrated fo r  blackbody radiation by using a graphite 
cavity with a 6 t o  1 aspect r a t io .  
by thermocouples i n  the bottom of and within the cavity and by optical-pyrometer 
measurements. 

The temperature of the cav i ty - i s  determined 

The geometry of the sample i s  tha t  of a disk 1 /2  inch (1.27 em) i n  diameter 
and 3/16- t o  1/8-inch (0.48- t o  O.32-cm) thick.  
surface provided by the zirconia cylinder, grog, and tungsten wires. The radi-  
ometer observes an area of s l igh t ly  l e s s  than 1/4 inch (0.63 cm) i n  diameter. 
If  the sample material cannot be inductively heated, tungsten and tantalum 
heating disks a re  placed under the specimen. During a t e s t  the furnace i s  
purged with argon. 
ples  located d i rec t ly  on the specimen surface and by optical-pyrometer readings. 
The optical-temperature readings must be corrected t o  obtain t rue  temperatures. 
These corrections a re  f o r  emittance and f o r  absorption by the sapphire windows 
of the ports and by the mirror. 

The sample i s  placed on the 

The temperature of the specimen i s  monitored by thermocou- 

The correction f o r  emittance i s  determined by an i t e r a t ive  process i n  
which an a rb i t ra ry  i n i t i a l  total-emittance value i s  assumed for determining a 
f i rs t -order  "true" temperature. The r a t i o  of the observed specimen radiometer 
output t o  the blackbody output for  t h i s  temperature i s  calculated as  the f i r s t -  
order value of the emittance a t  t ha t  temperature. I f  the assumed emittance i s  
correct, the  calculated value w i l l  agree with it; i f  not, the calculated value 
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is used to replace the former assumed value and the process is repeated until 
the assumed emittance value agrees with the calculated value. The iterative 
process w i l l  converge on the correct emittance value if it is valid to assume 
that the thermal energy at the particular temperature has a graybody distribu- 
tion. In other w o r d s ,  it must be assumed that the total emittance is equal to 
the spectral emittance at the.wavelength of the pyrometer. The error in emit- 
tance values determined for nongray materials w i l l  vary, depending on the dif- 
ference between the spectral normal emittance at the pyrometer wavelength of 
0.665 micron (0.665 pm) and the total normal emittance. 
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- 
Argon Purge  - E  

3 1. Specimen 

2.  Induction Coil 

3. Zirconia  Cylinder  
Filled. with Fine 
Zirconia  Grog and 
Tungsten Wire 

4.  Crucib le  Fil led 
with Coar se  
Zi rconia  Grog 

5. Radiometer  

6. Water-cooled Tube 

7.  Blank-off Valve 

8. Main Optical 
P o r t  

9. Right-angle M i r r o r  
f o r  Viewing Ta rge t  
Area  

10. Auxiliary Optical 
P o r t  

11. Cooling Coils 

12. Round Stop to 
Limi t  Rece iver  Field 

Figure El.- Cross section of apparatus for measurement of total normal emittance (SRI). 



APPENDD: F 

APPARATUS AND TEST PROCEDU€E FOR MEASURESIENT OF P O m - S I Z E  DISTRIBUTION 

Pore-size distributions for the ablation materials were determined by a 
mercury-intrusion method which is described in detail in reference 10. 
described briefly here. 

It is 

The basis of a liquid-intrusion method of measuring pore sizes and volumes 
is the nonwetting characteristic of the liquid used. Pressure is required to 
force the liquid to enter the, pores, and the pressure increases as the pore 
size decreases. The presswe required is determined by the surface tension of 
the liquid, the contact angle, and the diameter of the smallest pore filled at 
the given pressure. 

The experimental apparatus is designed to force mercury into the pores of 
a material at pressures ranging from subatmospheric to 5000 psi (35 MN/m2) and 
simultaneously to indicate the volume of mercury absorbed at a given pressure, 
permitting the determination of pore sizes and pore volmes for pore diameters 
ranging from 100 to 0.03 microns (0.03 pm). The volume penetration of mercury 
into a specimen is measured by a calibrated glass stem which is a part of the 
sample container (penetrometer) and through which the mercury passes as it 
enters the specimen; pressure is recorded simultaneously. 

For measurement of the pore sizes ranging from about 100 to 20 microns 
(100 to 20 pm), the penetrometer and sample are evacuated, and the pressure is 
increased by increments to force mercury into the pores until the pressure 
reaches 1 atmosphere (O.lMN/mZ). Then for measurement of pore sizes from 
about 20 to 0.03 microns (20 to 0.03 pm), the penetrometer is inserted into a 
hydraulic pressure vessel where the pressure can be increased in any desired 
increments from 1 atmosphere to 5000 psi (35 MN/m2). 
vessel allows continued reading of the position of the mercury column in the 
penetrometer stem. 

A window in the pressure 
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APPARATUS AND TEST PROCEDURE FOR MEASUREMENT OF MECHANICAL PROPERTIES 

Mechanical Properties From -2OOO to 8000 F (144' to TOO0 K) 

ApJaratus and test procedure (Melpar).- In the determination of tensile 
and compressive strength properties of materials, Melpar utilizes a hydrauli- 
cally powered universal testing machine with a capacity of 60,000 lbf (267 kN) 
and a screw-powered testing machine with a capacity of 10,000 lbf (4'3 W )  . 

The tensile specimen configuration is shown in figure G1. For compressive 
evaluations, a sample is 1 inch (2.54 cm) long with a cross section 1/2 by 
1/2 inch (1.27 by 1.27 cm) . 

Either strain gages or extensometers are used to monitor strain. On the 
six ablation materials, foil strain gages with a l/b-inch (0.63-cm) gage length 
were initially used to monitor strain for both tensile and compressive tests, 
but it was necessary to use extensometers at temperatures above 300° F (422O K) 
because melting of the samples caused erratic and spasmodic-strain readings 
which were obviously erroneous. 
extensometers because the molten condition of the sample surface caused deforma- 
tion of the surface by the extensometer grips. 
measured by monitoring the head movement of the machine, for compression tests. 
Strain gages were used up to 200° F (366O K) in compression tests and below 
room temperature for tensile tests. Extensometer measurements were made in 
tensile tests at and above room temperature. 

In many cases it was not possible even to use 

In such cases, the strain was 

Strain gages for measurements at low temperatures were cemented to the 
specimens. The bonding surface was roughened slightly, cleaned and degreased. 
The gage outline was then scribed lightly on the surface and adhesive accel- 
erator was applied and allowed to dry  completely. A small amount of adhesive 
was then applied to the specimen surface and the gage was pressed into place. 
In the case of the high-density phenolic-nylon samples, it was found that a 2 
to 3 lb (9  to 13 N) clamping'force applied through a layer of silicone rubber 
for approximately 60 seconds produced good bonds. A more porous surface such 
as that of the low-density phenolic-nylon did not form a bond as easily. 
isfactory results were obtained by bonding a thin teflon sheet to the material, 
and then bonding the gage to the teflon after its surface had been slightly 
roughened. 

Sat- 

Tests at temperatures above ambient are made possible by use of suitable 
resistance heaters surroun'ding the specimens. Tests at cryogenic temperatures 
are made possible by liquid-nitrogen chambers in conjunction with resistance 
heaters. Tests at elevated temperatures were conducted after the specimen had 
been heated for 30 minutes. 
assure a completely uniform temperature within the sample, but a longer heating 
period would have completely degraded the specimen. 

In some cases this time was not sufficient to 
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Apparatus and test2ro-cedure (SRI) . - A t  Southern Research I n s t i t u t e  a 
universal  t e s t ing  machine with mechanical screw loading i s  the basic apparatus 
f o r  the determination of t e n s i l e  and compressive s t ress -s t ra in  properties.  
load c e l l  i s  used i n  measuring t h e  applied load. 
c e l l  i s  supplied by a constant-voltage dc power supply, and i t s  output i s  read 
on an X-Y recorder. A f t e r  t h e  load-measurement system i s  in s t a l l ed  i n  the 
apparatus, a f i n a l  ca l ibra t ion  of pen t r ave l  of t he  recorder i s  made by dead- 
weight loading. This procedure i s  repeated regularly throughout a t e s t ing  
program t o  maintain accurate calibration. A comparison of t he  recorded load 
with the  visual  dial  gage of the  t e s t ing  machine during each tes t  provides a 
fur ther  check on the cal ibrat ion.  

A 
The input voltage t o  the  load 

The configuration f o r  the  t e n s i l e  specimen employed i s  shown i n  figure G2.  

The t ens i l e  specimens are loaded to f racture .  Compressive specimens 
The compression specimen i s  normally 1/2 by 1/2 by 1 i n .  (1.27 by 1.27 by 
2.54 cm). 
are usually loaded t o  20 percent s t r a i n  or  f racture ,  whichever occurs f irst .  

The basic features of t he  extensometers used t o  monitor axial s t r a in  are 
shown i n  f igure G 3 .  One extensometer i s  clipped on each s ide of the  specimen. 
Insulators of s teat i te  ceramic serve as r i g i d  contact arms. While affording 
e l e c t r i c a l  and thermal insulat ion fo r  the  extensometer .springs, the  ceramic 
contact arms t rans la te  t he  elongation within the gage length in to  flexure of 
the springs. The s t r a i n  gages a re  e l ec t r i ca l ly  connected in to  a bridge c i r cu i t .  
With two s t r a i n  gages i n  tension and two i n  compression, a l l  four gages i n  the 
c i r cu i t  serve as both strain-measuring and a s  temperature-compensating devices. 
The output of the  extensometer i s  proportional t o  the  average s t r a in  along the  
two edges of the  specimen. Calibration of the  extensometers i s  made by using 
a micrometer accurate t o  0.0001inch (2.54 pm) and a shunt-resistor cal ibrat ion 
c i r cu i t .  The extensometer heads a re  actuated by the  micrometer while the  out- 
put s ignal  i s  observed. The u n i t  s t r a i n  i s  then computed. 

The basic features of t he  extensometers used t o  monitor l a t e r a l  s t ra ins  
a re  shown i n  figure G 4 .  
ot ing heads, bearing d i r ec t ly  on the  specimen, t o  a d i f f e ren t i a l  transformer 
located a t  one end of the  arms. To prevent f a l se  indications of s m a l l  l a t e r a l  
motions of the  specimen as s t r a in ,  both the  heads and arms are  allowed t o  
ro ta te .  This arrangement assures f lush contact of the  heads with the  specimen 
corners. A small spring located a t  t he  outer end of t he  extensometer provides 
suf f ic ien t  force on the  arms t o  follow the s t r a in  motion. A miniature vibrator 
i s  attached near the  journal of the extensometer t o  eliminate s t a t i c  f r i c t i o n a l  
forces within the  journal. 
i s  achieved. The output of t he  d i f f e ren t i a l  transformer i s  recorded on an 
oscillograph recorder. Calibration i s  performed by the same procedure as 
employed f o r  the other extensometer. 

Specimen motion due t o  s t r a i n  i s  transmitted by piv- 

A s ens i t i v i ty  t o  a motion of 0.0001 inch (2.54 pm) 

I n  order t o  correlate  t he  l a t e ra l - s t r a in  data recorded on the  oscillograph 
recorder with the  data obtained on the  X-Y recorder, a timing device i s  incor- 
porated t o  provide a s ignal  t o  each recording instrument simultaneously. 

For measurements above ambient temperature, specimens a re  heated radiantly 
by two high-intensity tungsten lamps. A rheostat  i s  employed t o  regulate the  
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power t o  the  lamps, and heating r a t e s  a re  controlled by programing the rheo- 
stat .  Pr ior  t o  obtaining the t e s t  data, several thermocouples were placed on 
the  exter ior  faces and inside a spare sample and the lamps were positioned by 
t r i a l  and er ror  t o  es tabl ish uniform heating f o r  the samples. 
low-density phenolic-nylon and the f i l l e d  s i l icone resin,  the temperature-rise 
r a t e  t o  t e s t  temperature was ,about looo F/min ( 0 . 9 2 6 ~  K/s) a t  the specimen out- 
s ide surface and 80' F/min (0.741O K / s )  a t  the  specimen center. These calibra- 
t i on  t e s t s  a l so  determined the  time required a t  each temperature f o r  the  tem- 
perature t o  s t ab i l i ze  throughout the specimen. 

For both the  

Measurements a t  temperatures below ambient temperature a re  obtained by 
cooling the specimen with vapors from a liquid-nitrogen source. A cyl indrical  
shield i s  placed around the specimen and the vapors are  forced in to  the shield 
through a baf f le  arrangement; 
cooling. 

The circulat ion created provides uniform 
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1/8 in.(0.32 cm) 
tooling hole 8 in.(20.3 cm) R 

2.0 in. (5.08 cn) 

+SO02 in, (i.91 +e005 0- - 0 --* 750 -.ooo -.ooo c5:)- - ~ ~ ~ 

Figure G1.- Tensile specimen configuration for measurement of mechanical properties (Melpar). 
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3/4 
(1.9 

8 1/4 in. (20.9 em)---- 

?- 

cm ) I_- 

1/2 in.(l.27 en?) in. 

2 3/8 in. 
(6.04 cm) 
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Figure (2. - Tensile specimen configuration for measurement of mechanical properties (SRI) . 
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Differential Trails - 

Specime 
Pivoting 
Head 

Figure G4. - Sketch of extensometer for measurement of lateral strain (SRI).  
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TABLE 1. - ENTHALPY OF SIX CHARRING ABLATORS AND TWO CHARS 

Ablation material 

High-density phenolic-nylon (Melpar) ; 
reference temperature, 
32' F (273O K) 

Low-density phenolic-nylon (Melpar) ; 
reference temperature, 
32' F (273' K) 

Low-density phenolic-nylon (SRI); 
reference temperature, 
85' F (303' K) 

Temperature 

OF 

&-191.2 
-130.0 
-117.5 

-22.9 
-4.9 
32.0 
88.4 
293.6 
295.4 
502.4 
509.0 
699.8 
752.0 

a-184.0 
-156.1 
-131.8 

-112.0 

-73.0 

32.0 
75.8 
76.1 
212.0 
293.0 
299 0 
509.0 
689.0 
753.8 

-13.0 

a-320 

-280 
-31-9 

-93.8 
-93.8 

27.0 
16.0 
95.5 
96.8 
98.0 
185.2 
178.8 

322.2 

-90.8 

273.0 

300 - 3 
428.3 
438.8 
519 * 0 
571.0 
619.2 
695.0 
727 * 0 
799.0 

OK 

149.0 
183.0 
189.9 
193-0 
242.4 
252.4 

304.2 
418.1 
419.1 
534.0 
537 * 6 
643.5 
672.5 

168.5 
182 .o 
214.6 
247.9 

272 * 9 

153 - 0  

272.9 
297.2 
297 4 
372 8 
417 * 7 
421.1 
537.6 
637 * 5 
673 * 5 

78 
78 

203.1 
203.1 

270.1 

308.1 
308.9 
309 * 5 
357.9 
354.4 
406.6 
434.0 
421.8 
492.8 
498.7 
543.2 
572 0 
598.8 
640.9 
658.6 
698.6 

100 

204.7 

264.0 

Enthalpy 

Btu/lb 

-54.47 
-43.96 
-42.01 
-39 -76 
-16.54 
-11.36 
0 
19.03 
102.85 
101.23 
211.91 
214.00 
347 - 99 
386.41 

-54.00 

-43.60 
-30.78 
-13 * 59 

0 

-48.96 

14.45 
14.69 
65.74 

loo. 28 
103 * 73 
216.32 
338.56 
383.33 

-go. 1 
-99.1 
-80.3 
-46.5 
-48.3 
-45.7 

-19.1 
6.7 
4.3 
4.3 
44.8 
34.8 
74.2 
87.8 
90.0 
154.4 
170.4 
203.7 

-21.1 

250.2 
258.2 
317-0 
317 - 2 
373 * 1 

MJ/& 

-0.1268 - .io23 
- .0926 

- 

- .0978 
- .O385 
- .0264 
0 
.Ob43 
-2394 

.4933 

.4982 

.8101 

.8996 

- .1257 
- .io15 
- .03158 

~33358 

.e357 

- .1140 

-a07153 

0 

.03413 
* 1530 
* 2335 
.2415 
.5036 
.7882 
.8923 

- .209 
- .230 
-.le6 
- .io8 
-. 112 
- .lo6 
- .Ob90 
- .0443 

* 0099 
-0099 

.015 

.lo4 

.0808 

.172 

.204 

.209 

.3588 

.3960 

.4733 

.5814 

.6000 
7367 
-7371- 
.8670 

Weight 
loss, 

$ 

0 
0 
0 
0 
0 
0 
Q 
.4 
2.0 
2.0 
6.0 
6.1 

20.9 
15.4 

0 
0 
0 
0 
0 
0 

.3 

.3 
1.2 
2.0 
2.1 
6.1 
14.7 
21.0 

0 
0 
0 
0 
0 
0 

0 
.2 

.2 

.1 

.1 
1.1 
1.3 
1.5 
1.9 
2.2 
4.4 
4.1 
5.2 
7.1 
26.0 
18.1 
38.0 
59.7 

aSpecimen 1. 



TABLE 1.- ENTHALPY OF SIX CHARRING ABLATORS AND TWO CHARS - Continued 

. - .  . . -  . .. -. 

Ablation material 

...- . ~ . - 

Filled silicone res in  (Melpar); refer-. 
ence temperature, 32O F (27J0 K)  

F i l l ed  s i l i c o n e  resin (SRI) ; refer- 
ence temperature, 85’ F (303’ K) 

F i l l ed  s i l icone  r e s i n  i n  honeycomb 
(Melpar); reference temperature, 
32O F (273’ K )  

Temperature 
~- 

O F  

“-202.8 
-202.0 
-195.1 
-78.7 
-13.0 
32.0 

113 * 9 
116.8 
221.0 
320.0 
513 - 4 
747.5 
753.8 

- . . -. . - 

a-313 
-305 
-90 
-86 

0 
0 

144 
151 
184 
214 
2 43 
244 
249 
304 
374 

484 
491 
574 
598 
646 
697 
760 

“-202.0 
-132.7 
-35.5 
-34.6 
-13.9 
32 

119.0 
224.6 

322.4 
520.4 

383 

118.4 

321 * 9 

752.0 
762.8 

OK 

142.6 
143.0 

_. .- 

146.9 
211.5 
247.9 

320.0 
377.8 
432.7 
540.1 
670 .o 
673.5 

81 
86 

205 
207 
255 
255 
355 
339 
357 
374 
390 
391 
394 
424 
463 
468 
524 
528 
574 
587 
614 
642 
677 

181.5 
235 - 4 

247.4 

272 * 9 
318.3 

143.0 

235 * 9 

272 9 
320.8 
321.2 
379.8 
433.8 

672.5 
678.5 

434.1 
544.0 

. 

. _  

Btu/lb 
. - ._ - - - 

-77 - 76 
-77.40 

-37.89 
-15.32 

28.01 
30.35 
68.63 

103.52 
185.65 
288.67 
290. a4 

-74.84 

0 

-101.9 
-101.5 
-62.3 
-51 3 
-36.0 
-34.9 

20.9 
29.0 

56.8 
45.7 
43.5 
77.0 

102.9 
105.1 
151.8 
147.1 
185.2 
197 - 8 
216.7 
242.3 
260.5 

19.4 

44.2 

-76.54 
-55. 82 
-23.45 
-23.42 
-15 - 9 

0 
30.11 
3 o . b  
69.88 

105 9 
105.9 
188.1 
290.0 
295 * 5 

.. . - 

- ~ 

W/kg 

-0.1810 

- .0882 

-. - . . . . 

- .1802 
- .1742 

-e0357 
0 

.0652 
-0707 .m 

.6771 

.2410 

.4322 

.6720 

- 237 

- .145 
- .236 

- .119 
- .0837 
- .0811 

.0451 

.OM6 

.0674 

.io3 
-132 
.io6 
.lo1 
179 - 239 

.244 

.353 

.342 

.430 

.460 

.?Ob 

.563 

.605 

- .1782 
- .1299 

- .0545 - .0370 
0 

- .0546 

.0701 

.0708 

.1627 

.2464 

.2465 

.4380 

.6750 

.6879 
- -. . .. . -. . . 

Weight 
loss, 

$ 
-. 

0 
0 
0 
0 
0 

.2 

.5 

.5 

1.1 
2.0 

51.5 
52.5 

.a 

0 
0 
0 
0 
0 
0 
0 
0 
0 

.02 - 17 

* 05 
-70 - 50 
.60 

1.70 
1.60 
3 .oo 
3.10 

31.00 

0 

9-30 
33.00 

0 
0 
0 
0 
0 

.2 

.4  

.4  
-9  

1.1 
1.1 
2.5 

52.4 
53.5 

. .  ~ 



TABLG 1.- WTBALPY OF SIX CHARRING ABLAMRS AND TWO CHARS - Concluded 

Ablation material 

Carbon-fiber-reinforced phenolic 
(Narmco 4028) (Melpar); reference 
temperature, 32O F (273O K) 

Low-density filled epoxy in honeycomb 
(Avccat 5026-39-HC C) (Melpar); 
reference temperature, 
32' F (273' K) 

High-density phenolic-nylon char (SRI) * 
reference temperature, 32O F (2730 KI 

Low-density phenolic-nylon char (8RI); 
reference temperature, 
39 F (273O K) 

Temperature - 
-?I? 

a-220.6 
-194.8 
-179.9 
-177.8 
-135.4 
-67 .o 
17.5 
32.0 
76.2 
79.1 
136.8 
140.0 
324.5 
521.6 
547.2 
752.0 
753.2 

a-212.1 
-200.2 
-166.0 
-103 .o 
-28.0 
-13.0 
32.0 
78.8 
79.0 
302.0 
329.0 
502.0 
733.0 
a493 
1570 
1990 
2550 
3005 
3040 
3500 
449 
5010 
4040 

blow 
1595 
2050 
3545 
4025 
4490 
5045 e2040 
3170 
5055 
a1043 
2525 
3075 
3600 
4020 
4505 
4545 
5045 
b985 
1495 
1985 
2525 
9 5 0  
3550 
4025 
4505 
5025 

9( 

132.7 
147.0 
155.3 
156.5 
180.0 
217 9 
264.8 
q2.9 
297.4 
299.0 
331.1 
332.8 
435.2 
544.6 
558.8 
672.5 
673.2 
137 * 4 
144.0 
163.0 
198.0 
239.6 
247.9 
272.9 
298.9 
299.0 
422.7 
437.7 
533.7 
661.9 

529 
u 7  
1360 
1671 
1923 
1943 
2198 
2747 

827 
ll41 
1393 
2223 
2489 
2747 
7055 
13% 
2015 
3061 

834 
1657 
1962 
2253 
2486 
2756 
2778 
3055 
802 
1085 
1357 
1657 
1948 
2226 
2489 
2756 
3044 

$$ 

Enthalpy 

Btu/lb 

-49.59 
-46.13 
-43.97 
-43.15 
-36.90 
-24.17 
-12.60 
0 
12.28 
13 * 32 
29.05 
29.07 
88.43 
163.46 
171.31 
252.02 
251 * 53 
-56.63 
-54.14 
-48.78 
-36.59 
-18.18 
-14.76 
0 
15.68 
15 * 77 
95.74 107. io 
176.78 
273 -37 
117.2 
355.4 
654.1 
=9.7 
1272.5 
1344.8 
1549.8 
2158.6 
2759.4 
X87.3 

869.0 
$2: 
163.4 
1905-1 
2583.4 
3105.9 

2556.1 

740.2 
1570.7 

225.6 
94.6 
1300.2 
1581.4 
1518.6 
2004.7 
1881.0 
2477.5 
,190.2 
481.5 
562.7 
u53.4 
1278.0 
1600.2 
1746.4 
1966.2 
2326.2 

w/kg 

-0.ll54 

- .io05 
- .a59 

- .lo74 - .lo24 

-a0563 - .0293 
0 
.0286 
.OXO 
.&76 
.&77 
.a59 
.3&5 
.3w 
.%7 
.5856 

-.E& 
-.us 
- .1318 
- .OB52 - .Ob23 - .03& 
0 
.0365 
.0367 
.E29 
-2493 
.4ll5 
.6364 

.2723 

.E259 
1.520 
2.7672 
2.9573 
3. 1253 
3.6017 
5.0166 
6.4128 
4.8509 
4371 
-9031 
2.019 
3 8076 
4.4275 
6.0038 
7.2181 
1.720 
3.6503 
5.9404 
.5243 
2 . 3 ~  
3.0217 
3.6752 
3 * 5292 
4.6589 
4.3714 
5.7577 
.44X 
1.n9 
1.98 
2.6805 
2-7901 
3.7189 
4.0586 
4.5694 
5.4061 

Weight 
loss, 

$ 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
.4 
1.8 
2.1 
6.6 
6.6 
0 
0 
0 
0 
0 
0 
.2 
.6 
.6 
4.1 
4.9 
11.2 
27.5 
0 
.37 
.37 

1.12 
.76 
2.67 
1.18 
-1.61 
3.95 
.79 1.03 
.35 
.35 
1.06 
.36 
.36 
1.43 
1.00 
5.07 
3.34 
14.1 
3.1 
4.5 
.4 
5.9 
.4 
1-9 2.6 
3.6 
2.8 
4.8 
3-6 
1.6 
5-6 
-.4 
1.9 
10.1 



TABLE 2. - SPECIFIC HERT OF SIX CHARRING ABLATORS AND IWO CHARS 

Temperature 

OF OK 
Ablation mater ia l  

High-density and -200 144 
low-density -150 172 
phenolic-nylon -100 200 
(Melpar) -50 228 

0 255 
50 283 

100 3 l l  
150 339 
200 366 
250 394 

350 450 

505 450 
533 500 

550 ~ 561 

300 1 422 

Speci f ic  hea t  

B t u / l b - q  u/kg-q 

0.165 0 . 6 9  
.200 .a37 
235 .983 
.267 1.12 
.3w 1.25 
.331 1.9 
.361 1.51 
.393 1.64 
.423 1.77 

1.89 .453 
2.02 .484 

.513 2.15 

.542 2.27 
$571 2.39 
.599 

2.63 .628 
2.51 

.3, 1.63 ' 
422 ~ .396 1 1.66 1 

I 350 450 .404 1.69 I 
.410 ~ 1.72 

F i l l e d  s i l i c o n e  r e s i n  
and f i l l e d  s i l i c o n e  
r e s i n  i n  honeycomb 

,659 I 2.76 
.684 2.86 

600 
650 
700 644 
750 .740 I 3.10 

- 4 0  

.711 1 2.97 

-200 I .284 1 1.19 
.3Ol 

172 .316 1 ::$ 

OF 

Low-density 
f i l l e d  epoxy i n  
honeycomb (Avcoat 
5026-394% C) 
(Melp-) 

OK 1 Btu/lb-"F I MIlyl-OK 

-200 
-150 
-100 

-50 
0 

50 
100 
150 
200 
250 
300 
350 
400 

422 

1 1 E , 

ig 
500 .384 
550 561 .3 ,  
600 .395 
650 616 .400 

644 .405 700 
673- .408 750 

144 0.145 0.606 
172 .189 
2UO 
228 

1.45 

1.54 1.57 
1.61 , 
1.63 I 
1.65 
1.67 
1.69 1 
1.71 

1.50 , 

, , 

255 1 .284 1.19 
283 .JOT 1 1.28 
311 1 .329 1.38 
539 
366 
394 
422 
450 
477 

1.45 
1.52 
1.57 
1.66 
1.67 
1.70 

$5 1 -413 1.73 
.4B 1.75 
.420 1.76 
.424 1.77 

' 550 561. 
600 , 588 
650 . 616 .424 1.77 1 700 644 .425 1.78 
750 , 671 .425 1.78 

High-density 1 500 ' 532 : .22 .92 i  OW 810 .35 1.5 

2000 1365 .63 2.6 
1 2500 , 1643 ,67 2.8 

.67 2.8 
2.8 
2.8 .67 
2.8 

phenolic-nylon char 
(Sm) 1500 1 1088 , -50 2.1 

1 .67 

I 4500 I 2753 1 - .67 

' 3000 
3500 
4000 1 2475 

; 5000 3030 I .67 2.8 

Low-density 1000 
phenolic-nylon char 2000 
( S a )  

1 5000 

810 I .39 1.6 
1365 .52 2.2 
1920 .52 2.2 
2475 ~ .52 2.2 
3030 I .52 2.2 



TABIJ3 3. - THERMAL CONDUCTIVITY OF SIX CHARRING ABLATORS 

Ablation material 

High-densi ty 
phenolic-nylon 
(Melpar) 

Low-density phenolic- 
nylon (Melpar ) 

. .- 

"Specimen 1. 
bspecimen 2. 
%pecimen 3. 

AND TWO CHARS 

Mean temperature 

?I? 

a-184 
-123 
81 

,140 
270 
275 
276 
b381 
e424 
d-195 
-95 

74 
199 
310 
334 
e390 

a-269 
-161 
-90 
88 
334 
b403 
415 

d-213 
-112 
-105 
174 
217 
311 
e480 
194 
306 
356 

-20 

500 

OK 

153 
187 
300 
333 
405 
408 
408 
467 
490 
147 

296 
366 
427 
440 
472 
533 

106 
166 
205 
304 
440 
479 
485 
137 
193 
197 
353 
375 
428 
521 
363 
425 
453 

202 
244 

Thermal conductivity 

Btu/ft -hl"-?F 
: -- 

0.147 
.166 
.201 
.200 
.205 
.204 
.207 
m 7  
.206 
.141 
.169 
.186 
.192 
195 - 195 
.196 
.187 
.085 

-0359 
0549 
.0614 
.0745 
.0761 
-0751 
-0733 
.Ob72 
.0581 
.0606 
.0748 
.0760 
0735 
.0694 
.0721 
.0714 
.0689 

dspecimen 4. 
%pecimen 5. 
fSpecimen 6. 

~ ~~ 

?/m-OK 

) .255 
.287 
.348 
.346 
-355 
-353 
.358 
,358 
' 357 
,244 
.292 
.322 
-332 
-337 
a337 
-339 
.324 
.147 

- 

.0621 
0950 
.io6 
.129 
.132 
.130 
.127 
.0817 
-101 
.io5 
.129 
.132 
.127 
.120 
.125 
.E4 
.119 

Average AT 

53 



TABLE 3. - THERMAL CONDUCTIVITY OF SIX CHARRING ABLATORS 

Ablation material 

Low-density phenolic 
nylon ( SRI) 

~- 

"Specimen 1. 
bspecimen 2. 
%pecimen 3. 

AND TWO CHARS - Continued 

Mean temperaturr 

OF 

"-23.8 
98.5 

130 * 7 
139 1 
234.1 
331.3 
349.6 
457 9 
552 0 
762.0 

b-34. 6 
71.7 

188.1 
322.4 
433.1 
550 -0 
695.1 
922.8 

86.8 
186.4 
251.2 
367 6 
673.6 
863.9 

1-108 
-118 
-210 
-267 
e-48.6 

-65.6 
-159 - 3 
f144 

-. 

'-37.1 

. .. 

_ _ ~  . 

OK 

241.9 
~ -- 

309.8 
327 6 
332.3 
385.1 
439 .o 
449.2 
509.3 
561.5 
678.0 
235.9 
294 9 
359.5 
434.1 
495.5 
560.4 
640.9 
767 3 
234.5 
303.3 
358.6 
394.5 
459.2 
629.0 
734.6 
195 
190 
139 
107 
228.2 
218.7 
166.7 
335.2 
. . 

rhermal conductivit: 
. .  

Btu/ft -hr'-O 

0.058 
.065 
.054 
-057 
.048 
.051 
053 

.062 

.060 

.052 
,062 
.050 
.063 

.058 

.062 

.060 

.070 

.063 

.O?l 

.051 

.050 

.050 

.062 

.065 

.068 

.065 

.060 

.057 
073 

,073 
.058 
. O M  

.054 

dspecimen 4. 
eSpecimen 5. 
fSpecimen 6. 

$/m-OI 

I. 101 
.113 
.094 
9 099 
.083 
.088 
.092 
.io8 
.lo4 . 090 
.io8 
.087 
.io9 
.094 
.lo1 
.io8 
.lo4 
.121 
.io9 
.088 
,088 
.087 
.087 
.io8 
.113 
.118 
,113 
.lo4 
-099 
127 

.127 

.lo1 

.083 

2verage AT 

OF 

45.8 
191. : 
62.2 
60.5 

145.5 
231.7 
234.6 
331.4 
299. : 
255.4 
34.6 

142.3 
134.1 
187.0 
251 5 
338.2 
376 5 
207.4 
33.6 

137.9 
112.8 
114.8 
174.2 
230.3 
270.8 
203 
200 
110 

272 
251 
157 

52.8 

52.0 

OK 

25.4 
106.2 
34.5 
33.6 
80.8 

128.6 
130.2 
183.9 
166.1 
141.7 
19.2 
79 .o 
74.4 

103.8 
139.6 
187 7 
209.0 
1.15.1 
18.6 
76.5 
62.6 
63.7 
96.7 

127.8 
L15.3 
113 
L11 
61 
29.3 
~51.0 
139.3 
87 
29 



TABLE 3.- THXRMAL CONDUCTIVITY 

AND Two CHARS - 
)F SIX CHAREUNG ABLATORS 

! ont i nue d 

Ablation material 

?illed silicone resin 
(Melpar ) 

?illed silicone resin 
( SRI ) 

“Specimen 1. 
bspecimen 2. 
%pecimen 3. 
dspecimen 4. 

qean ten 

O F  

“-1-97 
-152 
351 
b446 
c693 
a-199 
-125 
109 
305 
e661 
f86 
115 
259 
448 
g669 
’683 

“172 

236 
346 
433 
605 
728 
b-48 
43 
98 
130 
179 
405 
510 
614 
728 
c313 
d-82 
-164 
e-31 
-255 

221 

erature 

OK 

146 
171 
450 
503 
640 
145 
186 
316 
424 
622 
303 
319 
399 
504 
626 
634 

351 
378 
386 
447 
496 
591 
660 
229 
279 
310 
327 
355 
480 
539 
596 
660 
429 
210 
164 
238 
114 

!hemal conductivity 

Btu/ft -hr-OF 
~ 

0.0500 

-0734 
-0774 
.0631 
.0518 
* 0590 
.0741 
-0777 
.0548 
.0642 
.0630 
.0641 
.0641 

.0542 

.0558 

.0561 

.053 

.050 

.055 

.062 

.067 

.048 

.057 

.066 

.058 
-057 
.058 
.060 
.069 
.060 
.057 
.058 
.065 
.068 
.056 
.066 
.042 

~~ 

eSpecimen 5. 
fspecimen 6. 
gspecimen 7. 
hSpecimen 8. 

d/m-OK 

3.0865 
-0938 
.127 

.io9 

.0896 

.lo2 

.128 

.134 

.09M 

.111 

.io9 

.111 

.111 

.0965 
* 0971 

.092 

.087 
-095 
.io8 
.116 
.083 
-099 
.114 
.lo1 
.099 
.lo1 
.lo4 
.120 
.lo4 
-099 
.lo1 
.113 
.118 
097 
.114 
.073 

.134 

iverage AT 

OF OK 

55 



TABU 3.- THERMAL CONDUCTIVITY OF SIX CHARRING ABLATORS 

Ablation material 

. - 

F i l l e d  s i l i cone  resir  
i n  honeycomb; 
direct ion A 
(Melpar ) 

Fi l led  s i l icone resir  
i n  honeycomb; 
d i rec t ion  B 
(Melpar) 

"Specimen 1. 
bspecimen 2. 
%pecimen 3. 
dSpecimen 4. 

AND TWO CHARS - Continued 

__ ~. 

Mean temperaturc 

OF 

"-177 
-121 
-15 
61 

165 
282 
396 

b536 
c646 

d-159 
-40 
97 

176 
306 

e417 
f559 
@;669 

"-173 
-83 

9 
165 
358 

b523 
=653 

d-1-52 

43 
176 
291 
385 

e581 
f682 

- 108 

___- 

__.___ 

OK 

157 
188 
247 
289 
347 
412 
475 
553 
614 
167 
233 
309 
353 
425 
487 
565 
626 

159 
209 
260 
347 
454 
545 
619 
171 
195 
279 
353 
417 
469 
578 
634 

_ _ _ -  

~ - _ _ _ _ _ _  

Chermal conductivity 
__I_ -__ 

B t u / f  t -hr-* _ _  
0.0450 

.0506 

.0605 

.0617 

.0648 

.0622 

.0566 

.0460 
0590 

.0619 

.0622 

.0639 

.0644 

.0602 

.0627 

.0588 

.0639 

.0689 

.0692 

.0673 
-0573 
.0508 
.0566 
.0658 
.0677 
.0651 
,0665 
a0653 
.0561 

.0614 

.0641 

.Om4 

eSpecimen 5. 
fspecimen 6. 
gspecimen 7. 

I. 0778 
.0875 
.io5 
.io6 
.111 
.io7 
.112 
.io8 
* 0979 
.0796 
.lo2 
.io7 
.io8 
.111 
.111 
. lo4 
. log 
0837 

. lo2 

.111 

.119 

.I20 

.116 
0991 

.OB79 
0979 
.114 
.117 
.113 
.115 
.113 
097 

~ ~ . . 

Average AT 
~- 

OK 



TABLE 3. - THERMAL CONDUCTMTY OF SIX CHARRING ABLATORS 

Ablation material 

- 

?illed silicone resin 
in honeycomb; 
direction C 
(Melpar ) 

:arbon-f iber- 
reinforced phenolic 
(Narmco 4028) 
(Melpar) 

- - -  -~ . 
qspecimen 1. 
bspecimen 2. 
Cspecimen 3. 
dspecimen 4. 
eSpecimen 5. 
fSpecimen 6. 

AND TWO CHARS - Continued 

dean temperature 

9 

“-188 
-117 
43 
329 
352 

b-166 
-97 
-81 
18 
172 
183 
329 
c484 
d559 
e587 

692 
651 

a - 195 
- 111 
12 
129 

b-188 
-91 
-6 
172 
c300 
a341 
475 e 

f556 
g628 
h680 
i716 
j755 
952 

_. 

OK 

151 
190 
279 
438 
450 
163 
201 
210 
265 
351 
357 
438 
524 
565 
581 
616 
639 

147 
194 
262 
327 
151 
205 
252 
351 
422 
444 
519 
564 
604 
633 
653 
674 
672 

tlhermal conductivity 

Btu/ f t -hr-OF 

0.0538 
.0628 
.o72o 
.0716 

.0617 

.0673 

.0687 

.0750 

.0714 

.0714 

.0704 

- 0730 
.0544 

.0702 

.0692 

.0629 

.0629 

.121 

.163 

.212 
255 
.129 
.165 
.186 
.264 
.309 
.324 
- 353 
.348 
.321 
- 343 
.344 
336 
I332 

gspecimen 7. 
hspecimen 8. 
ispecimen 9. 
jspecimen 10. 
kSpecimen 11. 

I/m-OK 

.io9 

.125 

.le4 

.126 

.093l 

.io9 

.125 

.124 

.126 

.0941 

.io7 

.116 

.119 

.130 

.123 

.123 

.209 

.282 

.367 

.223 

.286 

.322 

.458 

.534 

.611 

.602 
* 555 
.593 
.595 
.581 
- 574 

) .Ogl 

.441 

.561 

. -  

Iverage &C 
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TABU 3.- THERMAL CONIXTCTIVITY OF SM CHARRING ABLATORS 

Ablation material 

Low-density filled 
epoxy in honeycomb; 
(Avcoat 
5026-39-~C G) 
direction C 
(Melpar ) 

"Specimen 1. 
'Specimen 2. 
'Specimen 3. 
dSpecimen 4. 
eSpecimen 5. 

AND TWO CHARS - Continued 

Mean temperature 

OF 

"-182 
-92 
140 

b-I94 
-94 
-57 
-144 
'268 
d275 
e491 
513 
%lo 
h675 
1784 
j790 

OK 

154 
204 
333 
147 
203 
223 
335 
404 
408 
528 
540 
594 
630 
690 
694 

rhermal conductivity 

Btu/ f t -hr-?Z 

0.0290 
.0382 
.ob69 
.0312 
.0346 
.0365 
.0469 
.0506 
-0532 
.0631 
.0605 
.0615 
- 0573 
* 0513 
.Oh72 

iJ/m-OK 

1.0502 
.0661 
.0811 
.05Q 
-0599 
.0631 
-0811 
.OB75 
.0920 
. log 
.io5 
.io6 
-0991 
.0887 
.0817 

fSpecimen 6. 
gspecimen 7. 
hSpecimen 8. 
'Specimen 9. 
jspecimen 10. 
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TABLE 3.- THERMAL CONDUCTIVITY OF SIX CHARRING ABLATORS 

AND TWO CHARS - Continued 

Ablation material 

High-density 
phenolic-nylon cha 

rlean t emperaturc 

OF 

a867 
870 
875 

1230 
1234 
1236 
1239 
1604 
1608 
1608 
2147 
2154 
2156 
2158 
2570 
2573 
2577 
2580 
2995 
3000 
3010 
3000 
3720 
3770 
3910 
3910 
3930 
b730 

733 
734 

1132 
11.37 
1140 
1695 
1699 
1701 
1705 
2250 
2250 
2725 
2730 
3590 
3610 
4130 
4110 
4040 
4620 
4600 
4610 

‘1913 
1914 
2320 
2318 
2334 

OK 

736 
738 
741 
938 
940 
941 
943 

1146 
1148 
1148 
1447 
1451 
1452 
1453 
1682 
1683 
1686 
1687 
1918 
1920 
1926 
1920 
2320 
2348 
2425 
2425 
2436 
660 
662 
663 
884 
886 
888 

1196 
1198 
1199 
1202 
1504 
1504 
1768 
1770 
2248 
2259 
2547 
2536 
2498 
2819 
2808 
2814 
1317 
1318 
1543 
1542 
1551 

~ 

?hemal conductivitj 

Btu/ft-hr-% 

0.336 
.346 
* 351 
.521 
.533 
.561 
.566 
.665 
.700 
.695 
.747 
.780 
.795 
.786 
.991 

1.02 
1.07 
1.06 
1 .42  
1.42 
1.49 
1.47 
1.32 
1.42 
1.69 

1.81 
1-73 

.607 

.593 

.5& 

.691 

.676 

.TO3 

.766 

.755 

.810 

.747 

.841 

.866 

.8g0 
* 925 

1.37 
1.45 
1.84 
1.82 
1.89 

2.38 

2.47 
2.47 

.676 

.642 
* 791 
.767 
* 751 

W/m-Of 

0.580 
.598 
.606 
,901 
.922 

.978 
- 971 

1.15 
1.21 
1.20 
1.29 
1-35 
1-37 
1.36 
1.71 
1.77 
1.84 
1.83 
2.45 
2.43 
2.58 

2.29 

3.00 

1.05 
1.03 

1.17 

1.31 
1.40 
1.29 
1.46 
1.50 
1.47 
1.60 
2.38 
2.51 

3.16 

2-55 

2.45 
2.93 

3.13 

1.00 
1.20 

1.22 
1-33 

3.18 

3-27 
4.27 
4.27 
4.12 

1.11 
1-37 
1-33 

1.17 

1.30 

rverage AT 

530 

529 
513 
512 
511 
511 
553 
559 
559 
630 
628 
628 
624 
608 
604 
600 
596 
495 
500 
490 
500 
770 
750 
610 
610 
590 
229 5 
229.7 
230.1 
311 
316 
313 
423 
424 
423 
423 
610 
600 
800 
730 
660 
640 
600 
620 
580 
580 
580 
580 
462 
476 
480 
492 
506 

528 

.- 

- 
OK - 

294 
293 
294 

284 
284 
284 
307 
310 
31.0 
350 
349 
349 
346 
337 
335 
333 
331 
275 
278 
272 
278 
427 
416 
339 
339 
327 
127.1 
127. : 
127. i 
173 
175 
174 
235 
235 
235 
235 
339 
333 
444 
405 
366 
355 
333 
344 
322 
322 
322 
322 
256 
264 
266 
273 
281  

285 

- 
aSpecimen 1. 
bspecimen 2. 
%pecimen 3. 
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TABLE 3.- THERMAL CONDUCTIVITY OF SIX CHARRING ABLATORS 

P 

Ablation material 

Low-density phenolic. 
nylon char (SRI) 

AND TWO CHARS - Concluded 

Mean temperatun 

OF 

"797 
797 
796 
797 
1345 
1347 
1347 
1347 
1963 
1966 
1969 
2610 
2630 
3140 
3140 
3140 
3650 
3670 
3670 
4300 
4300 
4360 
b1174 
1176 
1179 
1180 
1473 
1473 
1.473 
2270 
2270 
2270 
2870 
2870 
2870 
3710 
3710 
3710 
4335 
4335 
4335 

698 
698 
697 
698 
993 
1003 
1003 
1003 
1345 
13 46 
1348 
1704 
1715 
1998 
1998 
1998 
2026 
2292 
2292 
2642 
2642 
2685 
907 
908 
910 
910 
1073 
1073 
107 3 
151-5 
1515 
1515 
1848 
1848 
1848 
2314 
2314 
2314 
2661 
2661 
2661 

Thermal conductivitj 

B t u / f t  -hr -01 

0.58 
.62 
- 57 
.58 
.942 
.883 
.82 
.81 
1.12 
1.07 
1.07 
1.37 
1.41 
1.47 
1.49 
1.52 
1.62 
1.71 
1.72 
2.39 
2.40 
2.41 

* 73 
-71 
72 
70 
.858 
.867 
.858 
1.04 
1.11 
1.12 
1.35 
1.36 
1-33 
2.55 
2.55 
2.63 
2.37 
2.39 
2.41 

W/m-OE 

1.0 
1.1 

1.00 
-99 
1.63 
1.53 
1.4 
1.4 
1.93 
1.85 
1.85 
2.37 
2.44 
2.54 
2.58 
2.63 
2.80 
2.96 
2.98 
+.13 
+.15 
c.17 
~.26 
~.23 
~.25 
t.21 
1.48 
t.50 
-.48 
-.80 
..92 
. .g4 
!.34 
!.35 
!.30 
-.41 
:.41 
-.55 .. 10 
-.13 
.17 

4verage A! 
- 

O F  

370 
372 
372 
375 
472 
480 
483 
485 
378 
583 
585 
905 
905 
~060 
~060 
to60 
ti70 
-170 
-170 
950 
950 
950 
606 
606 
610 
610 
667 
669 
669 
.057 
.057 
,057 
786 
786 
786 
553 
553 
553 
850 
850 
850 
- 

205 
206 
206 
208 
262 
266 
268 
269 
321 
324 
325 
502 
502 
588 
588 
588 
649 
649 
649 
527 
527 
527 
336 
336 
339 
339 
370 
371 
371 
587 
587 
587 
436 
436 
436 
307 
307 
307 
472 
472 
472 - 

"Specimen 1. 
bspecimen 2. 
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TPLBLE 4.- THERMAL EXPANSION OF SIX CHARRING ABLATORS 

142 
173 
198 
222 
241 
251 
273 
299 
313 
373 
413 
433 
470 

173 
198 
223 
251 
290 
299 

148 

Ablation material 

-6.18 
-5 * 27 
-4.39 
-3.52 
-2 * 79 
-2 * 37 
-1.33 . 00 
.70 
4.05 
6.31 
7.20 
7-92 

-5.08 
-4.20 
-3.28 
-2.16 
-.40 
.oo 

-5.87 

[igh-density phenolic- 
nylon (Melpar) 

.- 

aSpecimen 1. 
bspecimen 2. 
‘Specimen 3. 
‘Specimen 4. 
eSpecimen 5. 

Temperature 

OF 

a-200 
-148 
-100 
-58 
0 
32 
80 
104 
212 
284 
320 
356 
374 

b-202 
-148 
-92 
- 49 
0 
32 
75 
104 
140 
212 

‘320 
248 

d392 
. -. 

OK 

144 
173 
200 
223 
255 
273 
300 
313 
373 
413 
433 
453 
463 
143 
173 
204 
228 
255 
273 
297 
313 
333 
373 
393 
433 
473 

Expansion 

-7.15 
-6.21 
-5.10 
-4.12 
-2.65 
-1.75 . 00 
1.00 
7.39 
12.23 
14.55 
17 * 19 
18.00 
-7-07 
-5.98 

-3.70 
-2.45 
-1 - 55 . 00 
1.00 
2.40 
6.91 

-4.76 

8.88 

19.00 
13-79 

Temperature 1 Expansion 

OF 

a-204 
-148 
-103 
-60 
-26 
-8 
32 
79 
10 4 
212 
284 
320 
b387 
‘-193 
-148 
-103 
-58 
-8 
63 
78 
90 
125 
144 
16 4 
1-97 

e390 

289 
d337 

~~~ 

305 .55 
325 1.76 

4.60 
365 416 I 6.78 
442 7.33 
472 I 7.55 

61 

. .. 



TABLF 4.- TBERMAL T A N S I O N  OF SIX CHARIELNG ABIdToRs - Continued 

Expansion 

dls/in. (nrm/m: 

2.40 
4.57 
2.50 

83 
-.07 

2.03 

4 . 9  

-~ 

0 

2-59 

4.92 
4.91 
4.91 
5.20 
5.70 
6.03 
6.63 
6.80 
6.80 
6-75 
6.20 
6.67 
4.00 
1.73 
.70 

-.47 
-4.00 
-6.13 
- 6 . 9  

-17.23 
0 

.70 
1.77 
2.10 
2.30 
3.07 
3.33 
3.60 
3.57 
3-83 
4.03 
4.00 
3.33 
2.23 

.20 
-1.97 
-3.47 
-7.00 

-38.70 
-66.67 
-76.50 
-79. 20 
-91.26 

Ablation material 

ow-density phenolic 
nylon 

O F %  

9 9 . 7  
35.4 

- 

-105 
-320 
-qi 
-187 
-121 
-73 
52 
79.7 

$2 
374 
445 
553 
650 
719 
622 
445 
369 

aSpecimen 1. 
bSpecimen 2. 

%pecimen 3. 
epecimen 4. 

.. 

299.4 
274.E 
197 
70 

105 
152 
188 
215 
204 
299.4 

463 
502 
562 
616 
654 
601 
502 
460 

;E 

Temperature 

150 
2f31 
161 
l..U 
74.3 
79.7 

152 
166 
253 
264 
275 
303 
316 
335 
349 
379 
406 
432 
475 
516 
548 
607 
634 
651 
665 
614 
526 
494 
76.6 

679.7 
104 
133 
169 

253 

343 

481 
406 
546 
502 
655 
601 
709 
741 
769 
643 
548 

198 

;: 
21; 

79.7 

339 
367 
345 
317 
296. 
299. 
340 
347 
396 
402 
408 
423 
431 
441 
449 
466 
481 
495 
519 
542 
559 
592 
607 
617 
624 
596 
547 
529 
297.1 
299. 
313 
329 
349 

307 

446 

365 

2z 
:; 
522 
481 
5% 
578 
619 
633 
649 
6 7  
682 
612 
559 
299.4 

9 9 . 7  
15.0 

-103 

-66.0 

80.3 

-318 
-170 

40.1 

173 
265 
348 
465 
570 
675 

0 
-1.00 
-4.20 
-7.80 
-7.00 
-5.70 
-4.70 
-3.60 
-.90 
-.07 
2.77 
5.73 
5.00 
4.30 
1.93 

-2.80 
-00.30 
-95.00 
-89.50 
-09.10 

0 
1.93 

-4.40 
-8.20 
-5.63 
-3.33 
-.93 

0 
4.30 
7.03 
4.63 
5.30 
3.07 

-0.03 
-45.40 
-46.10 
-50.30 
-50.50 
-50.60 
-51.10 
-51.10 

0 
-1.q 
-4.30 
-8.07 
-6.03 

- .73 
-\67 

I[:; 

-10; 

__  193__ 

299.4 
263.5 
198 
79 

157 
210.1 
277.4 
299.7 
351 
402 
448 
513 
572 
630 

Ablation material 

459 
383 

‘79.7 

-99 
-318 
-227 

-144 

79.7 

33.1 

-187 

-22.7 
61.5 
78.0 
74.3 
107 

aW-denSity phenolic 
nylon (Sm) 
(continued) 

510 
460 
299-4 
299.4 
273.5 

79 
129 

175 
242.5 
289.3 
290.4 
296.4 
314.7 

152 
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TABLg 4.- TKEIo.IAL EXPANSION OF 8IX CHARRING mmRs - Continued 

Ablation material 

Filled sillcone resin 
(Help-) 

Fi l led silicone resin 
(si=) 

%pSpech=n 1. 
bSpeeFnen 2. 
=specken 3. 
%pciPen 4. 
=specimen 5. 
fspeci~cn 6 .  

Temperature 

op 

a-222 
-155 
-llO 
-40 
32 

133 
154 
251 
324 
387 

b-180 
-150 
-125 
-llO 
-50 
32 
77 

135 
146 
148 
258 
335 
405 

880 
32 

-59 
-100 
-320 
-221 
-54 
-18 
74 

100 
151 
203 
252 
301 
360 
397 
455 
499 
534 
599 
642 
9 9  
32 

-102 
-318 
-229 
-3 
76 

109 
l28 
156 
180 
a 7  
263 
287 
324 
360 
3% 
432 
469 
506 
544 
534 
615 
655 
651 

7 9  
36 

-103 
-320 
-253 
-166 
-85 
33 
79 

628 

% 

132 
169 
194 
233 
273 
329 
341 
395 
435 
470 
155 
172 
186 
194 
228 
273 
2 9  
3% 
3% 
337 
398 
441 
480 

300 
273 
222 
200 
77 

132 
225 
245 
296 
3 u  
339 
368 
395 
422 
455 
476 
508 
532 
552 
588 
612 
299 
z73 
198 
79 
19 
234 
297 
316 
326 
342 
355 

415 
435 
455 
475 
495 
516 
536 
557 
580 
597 
619 
616 
604 
299 
275 
19s 
77 

l l5  
163 
201 
8 4  
299 

2: 

-3.10 
.00 

3.35 
4 .w  
4.81 

10.70 
15.00 
18.l.8 

0 
-2.73 
-8.45 

-1l.20 
-17.90 
-15. 30 
-9.61 
-6.65 
-.23 
1.20 
4.86 
8.65 
l2.00 
15.60 
19.50 
22.75 
26.40 
28.10 
27.90 
27.90 
13.3’3 

0 
-3.00 

-13.60 
-23.60 
-21.90 
-9.90 
-.90 

-1.78 
3.15 
5.15 
6.90 
9.40 
12.80 
14.50 
17.00 
20.00 
30.90 
29.60 
3 l . P  
33.50 
37.20 
40.w 
36.10 
1.35 

-75.00 
-97.10 

0 
-2.33 

-12.52 
-23.21 
-20.81 
-18.32 
-16.65 
-3.76 
-.57 

Ablation material 

Filled sillcone resin 
in honeycomb; 
direction A (Melpar) 

Filled silicone resin 
in honeycomb; 
direction B (Melpar) 

Filled sillcane reeln 
in honeycomb’ 
direction c  elpa par) 

Temperature 

DF 

a-200 
-180 
- l l9  
-112 
-50 
32 
80 

162 
221 
239 
378 

b435 
‘-195 
-125 
-112 
-46 

0 
32 
78 

163 
9 3  
204 

d342 
395 

e405 

8-200 
-180 
-U9 

0 
32 
81 

151 
214 
253 
342 

b414 
‘-179 
- l l9  
-llO 
-50 
12 
79 

147 
159 
163 
164 
220 
245 
252 

6387 
“3ss 
f409 

a-200 
-148 
-109 

0 
32 
80 

144 
149 
162 

b252 
381 
392 
397 

‘-194 
-180 
-169 
-148 
-lo9 
-40 
32 
78 

144 
1% 
248 
354 
369 
392 

d342 
31 
3% 
405 

9( 

144 
155 
189 
193 
228 
273 
303 
345 
378 

497 
147 
186 
193 2w 
255 
273 
299 
346 
351 
$9 
445 
475 
480 

144 
155 

255 
273 
300 
339 
374 
3% 
445 
485 
1% 
189 
194 
228 
262 
299 
337 
344 
346 
346 
377 
391 
395 
470 

E 

2: 
144 
1-73 
195 
255 
273 
m 
335 
3 3  
345 
395 
467 
473 
476 
148 
155 
162 
173 
195 
233 
el3 
299 
335 
342 
393 
452 
460 
473 
445 
467 
475 
480 

-16.71 
-15.48 
-11.61 
-10.92 
-7.65 
-2.70 

4.59 
7.85 
8.61 

15.10 
17.06 

-16.20 
-11.59 
-11.39 
-6.80 
-4.69 
-2.62 

.w 
4.30 
5.00 
6.b0 

13.98 
15.70 
15.80 

.oo 

-21.91 
-20.06 
-14.94 
-6.10 
-3.60 

.OO 

-15.40 

-4.85 

4.50 
5.60 
6.00 
5.95 

10.60 
12.59 
13.09 
20.50 
20.80 
21.30 

-7.87 
-5.82 
-4.49 
-1.75 
-1.04 . 00 
1.35 
1.42 
1.60 
3.12 
4.75 
4.93 
4.96 

-7.25 
-6.63 
-6.50 
-5.48 
-4.43 

-9.41 

.OO 

-2.61 
-1.10 
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TABLF 4.- THFXWL EXPANSION OF S M  CHARRING ABLAMRS - Concluded 

_ _  

Ablation material 

Carbon-fiber- 
reinforced phenollc 
(Narmco 4028) 
(Melpar ) 

Fil led epoxy i n  
honeycomb (Avcoat 
5026-39-HC G); 
direction A (Melpar) 

aSpecimen 1. 
bSpecimen 2. 
%qecimen 3. 
dgpecimen 4. 
eSpecimen 5. 
fSpecimen 6. 

- - ._ -- 
Temperature 

OF 

a-143 
-138 
-86 
-20 

5 
55 
75 

226 
330 

b-225 
-143 
-99 
-40 
-8 
24 
75 
95 

299 
363 

c412 
a437 
e479 

1539 
3588 

f509 

2;; 
k618 
'648 

750 

a-195 
-100 

7 
75 
94 

137 
b-177 

-100 
13 
75 
92 
112 
182 

6225 

e3543 

g 443 
h5oo 

d232 

f 361 

OK 
_. - 

176 
179 
208 
244 
258 
286 
297 
381 
438 
130 
176 
200 
233 
251 
269 
297 
308 
421 
457 
484 
498 
521 
538 
,542 
542 
554 
5432 
598 
615 
672 

147 
200 
259 
297 
307 
331 
157 
200 
263 
297 
306 
317 
356 
380 
384 
450 
456 
501 
533 - 

Expansion 

-1.98 
-1.93 
-1.45 
-.95 
-.67 
-.16 
.oo 
1.78 
3.20 

-2.57 
-1.92 
-1.65 
-1.15 
-.eo 
-.45 
.oo 
.19 

2.19 
3-52 
3-72 
6.34 

12.90 
12.20 
18.70 
19.40 
19.40 
23-30 
24.40 
25.80 
26.30 

-4.78 
-3.47 
-1.60 . 00 

.26 
1.22 

-4 - 55 
-3.55 
-1.56 . 00 

.40 

.54 
1.90 
1-55 
1.72 
2-P5 
1.91 
2.20 
2.15 

~ . .. 

Ablation material 

F i l led  epoxy i n  
honeycomb (Avcoat 
5026-39-HC G); 
direct ion B (Melpar) 

F i l l e d  epoxy i n  
honeycomb (Avcoat 
5026-39-HC G) ; 
direction C (Melpar) 

gspecimen 7. 
hspecimen 8. 
$Specimen 7. 
kpecimen 10. 
kSpecimen U. 
'Specimen 12. 
Wpecimen 13. 

~ 

Temperature 

OF 

8-200 
-71 
-15 
50 
75 

105 
190 

b-82 
-50 
55 
75 

=5 
202 

c340 
d355 

f4g0 

a-174 
-83 
20 
75 
112 

b-173 
-61 
35 
75 

130 
c210 
'240 E 302 

305 

e460 

g433 
h509 

_. 

OK 

144 
216 
247 
283 
297 
314 
361 
210 
228 
286 
297 
325 
367 
444 
452 
511 
527 

159 
209 
266 
297 
317 
159 
221 
275 
297 
327 
372 
389 
423 
424 
496 
538 

Expansion 

mils/in. (mm/m] 

-4.20 

~ _ _  

-2.63 
-1.61 
-.25 . 00 

.47 
1.65 

-2.74 
-2.01 
-.40 . 00 

.75 
1-53 
1.88 
1-95 
2.11 
2.08 

-4.04 
-2.81 
-.95 . 00 

.91 
-4.02 
-2 - 53 
-.go 
.oo 

1.10 
1.81 
2.08 
2.36 
2.20 
2.32 
2.14 
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TABU 5. - EMITTANCE OF PHENOLIC -NYLON CHA.FS (SRI) 

Ablation material 

High-density phenolic- 
nylon char 

Specimen 

"1 

c3 

c4 

c5 

Ob served 
temperature 

OF 

1410 
1489 
1606 
1809 
2200 
2360 
2532 
2679 
2861 
2919 
2919 
1595 
1889 
2200 
2553 
2819 
2840 
2970 
3000 
1578 
2050 
2388 
2741 
3172 
3740 
1409 
1648 
2032 
2359 
2591 
2814 
3180 
3398 
3516 

OK 

1038 
1082 
1147 
1259 
1476 
1565 
1661 

1875 
1875 

1742 
1843 

1141 
1304 
1476 
1672 
1820 
1832 

1920 
1131 
1393 
1581 
1777 
2016 
2331 
1037 
1170 
1383 
1-565 
1693 
1817 
2020 
2141 
2207 

1904 

True 
temperature 

OF 

1495 
1574 
1708 
1922 
2367 
2538 
2735 
2939 
3188 
3270 
5190 
1676 
2008 
2367 
2770 
3134 
3109 
3335 
3371 
1674 
2193 
2578 
2963 
3437 

1628 
2192 
2570 
2840 
3083 
3513 
3768 
3881 

4146 
1441 

OK 

1085 
1129 
1203 
1322 
1569 
1664 
1773 
1886 
2025 
2070 
2026 
1185 
1370 
1569 
1793 
1995 
1981 
2106 
2126 

1686 
1900 
2163 
2556 
1055 
1159 
1472 
1682 
1832 
1966 
2205 
2347 

1184 
1470 

2409 

Total 
normal 

emittance 

0.67 
77 - 75 
.86 
.84 
87 
.86 
.74 
.65 
.62 
b.81 
93 
.89 
.83 
79 
.66 
-78 
.62 

b.62 
77 
.86 
.84 
.89 
-91 

-75 
-90 
75 - 74 

* 73 
77 
.76 - 75 

b.80 

b.79 

"Specimen appeared to be transmitting some subsurface radiation from 

?Heating disks melted. 
'Thermatomic carbon used to fill cracks and reduce subsurface radiation. 

deating disks. 
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TABLE 5.- EMITTANCE OF P?3NOLIC-NYLON CHARS (SRI) - Concluded 

Ablation material 

Low-density phenolic- 
nylon char 

Specimen 

1 

2 

3 

4 

5 

Observed 
temperature 

?I? 

1490 
1528 
1890 
1887 
2317 
2295 
3270 
1400 
1549 
1538 
1761 
1788 
1900 
2070 
2332 
2322 
2535 
2710 
2866 
2845 
2990 
1673 
1935 
2140 
2419 
2595 
2937 
1.596 
1792 
1941 
2295 
2295 
2575 
3480 
3540 

OK 

1082 
1103 
1304 
1303 
1541 
1529 
2070 
1032 
1115 
1109 
1233 
1248 
1310 
1149 
1550 
15 44 
1662 
1759 
1846 
1834 
1915 
1184 
1329 
1443 
1598 
1696 
1885 
1141 
1250 
1333 
1529 
1529 
1684 
2187 
2220 

T r u e  
temperature 

OF 

1573 
1608 
2013 
20 12 
2498 
2460 
3565 
1468 
1629 
1620 
1866 
1899 
2010 
2207 
2493 
2479 
2716 
2948 
3166 
3126 
3323 
1764 
2058 
2280 
2584 

3237 
1680 
1907 
2068 
2451 
2457 
2769 
3786 
3861 

2812 

OK 

1128 
1148 
7-373 
1372 
1642 
1621 
2234 
1070 
11-59 
1154 
1291 
1309 
1371 
1480 
1639 
1631 
1763 
1891 
2012 
1990 
2100 
1234 
1397 
1521 
1689 
1816 
2052 
1188 

1403 
1616 
1619 
1792 
2357 
2398 

1314 

T o t a l  
normal 

emittance 

0.79 
.86 
.86 
85 

.84 
90 

.87 

.83 
-89 
.86 
.88 
.86 
.96 
-91- 
.94 
.96 
-95 

d.82 
d. 71 
d.75 
d.68 

.92 - 90 

.94 
97 

d .  84 
d. 74 

-90 
.84 
.88 
-95 
92 

-92 
.91 
9 89 

k i t e  residue formed on surface. 
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TABLE 6.- DEETSm OF SIX CHAXENG ABLATORS AND TWO CHARS 

41.80 
41.19 
40.31 
39.66 
39.44 ----- 
38.61 
37.74 
36.84 

Ablation reaterial 

669. 
659,g 
645.7 
633.3 
631.7 _-_--- 
618.4 
604.5 
590.1 

Yigh-density phenolic- 
nylon (Melpar) 

73.35 
72.92 
72.36 
72-17 
71-79 
70.86 
68.99 
67.30 

65.30 

66.74 
65.80 

Low-density phenolic- 
nylon (Melpar ) 

1175 
1168 
1159 
11% 
1150 
1135 
1105 
io78 

io46 

1069 
1054 

;ow-density phenolic- 
nylon (sm) 

( 8 )  
43-39 
43.16 

'illed silicone resin 
(Melpar ) 

702.7 
691.4 
678.6 

670.0 
675 * 5 

~ 

Temperature 

OF 
~ 

-200 
-100 

0 

4; 
104 
23-2 
284 
320 
356 
374 

-200 
-103 
-4 
32 
b75 
104 
23-2 
284 
320 
387 

-200 
-100 
0 

b70 
100 
150 

-222 
-155 
0 
32 

133 
154 
251 
324 
387 

b75 

OK 

144 
200 
255 
273 
297 
313 
373 
413 
433 
453 
463 

144 
198 
251 
273 
297 
313 
373 
413 
433 
470 

144 
200 
255 
294 
311 
3 39 

132 
169 
255 
273 
297 
329 
341 
395 
435 
470 
~ 

Density 

( 1  

37.53 
37-31 
37 08 
36.98 
36 83 
36.39 
35-73 
35.14 
34.97 
34 36 

( (  
37 - 25 
37 * 03 
36 * 78 
36.56 
36.48 
36.33 

( 1  
42.58 
42-03 
40.64 
40.38 
39.96 
39.34 
39.3-2 
38.34 
37.68 
37.21 

601.2 
597.7 
593.9 
592 - 3 
590 * 0 
582.9 
572 * 4 
562.8 
560.2 
550.4 

596.6 
593 1 
509 * 1 
585.6 
584.4 
502 .o 

682.1 
673.5 
651.0 
646.8 
640.0 
630.1 
626.6 
614.1 
603 - 5 
596.1 

Ablation material 

Filled silicone resin 
(SX) 

Filled silicone resin 
in honeycomb 
(Melp=) 

Carbon-fiber- 
reinforced phenolic 
(Narmco 4028) 
(Melpar ) 

Filled epoxy in 
honeycomb (Avcoat 
5026-39-HC 0 )  
(Melpar) 

Temperature 

OF 

-200 
-100 
0 

b70 
100 
150 
200 
joo 
400 

-200 
-119 
0 
32 

151 
248 
342 
4.20 

-225 
-143 

-40 
5 

95 
226 
363 
437 
539 
648 
750 

-174 
-82 
0 
32 
b75 
3-25 
210 
340 
443 
5m 

b75 

b75 

OK 

144 
200 
255 
294 
311 
339 
366 
422 
478 

144 
189 
255 
273 
297 
339 
393 3 

130 
176 
233 
258 
297 
308 
381 
457 
498 
554 
615 
672 

159 
210 
255 
273 
297 
325 
372 
444 
501 
532 

Density 

ZqGF 

42.36 
42.17 
41.83 
41.14 
40.42 
39.59 
39 19 

(, 
87.46 
07.28 
87 * 09 
86.97 
86.78 

85.34 

80.47 
77.60 
75.17 

( 
33.52 
33.39 
33.26 
33 - 19 
33 * 09 
52-65 
32.14 
31.14 
29 - 98 
29-20 

86.72 
86.09 

84.41 

658.9 
647.4 
634.1 
627.8 

1401 
1398 
1395 
1393 
1390 
1389 
1379 
1367 
1352 
1289 
1243 
1204 

536 9 
534.9 
532.8 
531.6 
53.0 
523.0 
514.8 
498.8 
480.2 
467.7 

aDensity calculated from thermal-expansion data and weight measurements after expormre to temperature. 
bRoom-temperature measurement. 
cDensity calculated A-om thermal-expansion data and room-temperature density measurements. 



TABLE 7.- TEXSILE PROPEFZIES OF S M  CHARRING ABLAMRS 

Total 
elongation, z 

0.43 
.38 
.40  
.50 
.4 
.3 
.6 
.6 
.9 
.9 

1.5 
1.8 
1.6 
1.6 
2.4 

.60 
1.04 
.74 
.90 
1.05 
1.14 

.70 
1.08 
1.2 
1.1 
2.3 
1.4 
2.1 

1.00 
1.04 

1.1 
.9 
.9 

2.2 
3.6 
3,6 

43.6 
$3.6 
$3.6 
43.6 

43.6 
43.6 

43.6 
3.4 

.2 

.3 
3.5 
3.6 
3.6 

3.6 
43.6 
43.6 
43.6 
43.6 

4::; 

43.6 
43.6 
43.6 
$3.6 

%mi” stress. 
%train not recorded beyond 3.65. 
CSpecimen broke in gripe. 
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TAEm 7.- TENSILE PROPERTIES OF SIX C H A P " G  ABLATORS (MEWAR) - Concluded 

1 Ablation 
material 

Filled silicone r e s i n  
i n  honeycomb; 
direction B 

arbon-fiber- 
reinforced phenolic 
(Namco 4028) 

i l led epow i n  

.I lea epoxy i n  
honeycomb (Avcoat 
5026-39-HC G); 
direction B 

Temperature 

9 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
200 
300 
300 
400 
400 

c500 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
200 
300 
300 
400 
400 
5430 
5430 
600 
boo 
700 
700 
750 
750 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
200 
300 
300 
400 
400 

-xx) 
-200 
-100 
-100 

0 
0 

75 
75 
xx) 
200 
300 
300 
400 
400 

%axhum stress,  
%train not recorded beyond 3.6%. 
'Specimen broke i n  p i p s .  

OK 

144 
144 
200 
200 
255 
255 
297 
297 
366 

E 
422 
477 
477 
533 

144 
144 
200 
200 
255 
255 
297 
297 
366 
366 
422 
422 
477 
477 
533 
533 
588 
588 
644 
644 
671 
671 

144 
144 
200 
200 
255 
255 
297 
297 
366 
366 

477 
477 

144 
144 
200 
200 
255 
255 
297 
297 
366 
366 
422 
422 
477 
477 

422 
422 

U l t i m a t e  strength 

P s i  

880 
920 
390 
320 
155 
160 

&io5 
104 

101 
a120 
a104 

72.5 

55.5 
62.9 

4690 
4380 
4450 
3540 
3830 
3810 
4360 
4920 
2070 
3910 
3640 
4010 
2610 
2180 
1630 
1340 
1880 
1770 
1880 
1620 
=bo 
1485 

747 
629 
677 
485 
619 
608 

?;2 
93 
1x) 
68 
86 
76 
53 

549 
592 
534 

491 
4% 
362 
49 
64 
49 
52 
20 
19 

m/m2 

6.1 
6.3 
2.7 
2.2 
1.07 
1.1 

.724 

.6% 

.m 

.696 

.a27 
-717 
.383 
.434 

32.3 
30.2 
30.7 
24.4 
26.4 
26.3 
30.1 
33.9 
14.3 
27.0 
25.1 
27.6 
18.0 
15.0 
l l . 2  

13.0 
12.2 

l l . 2  

10.24 

5.15 
4.34 
4.67 
3.34 
4.27 
4.19 
4 . u  
3.42 

.64 
,827 
.47 
.59 
.52 
.37 

3.79 
4.08 
3.68 
3.42 
3.09 
3.39 
3.42 
2.543 

.34 

.44 

.34 

.36 

.14 

.13 

9.24 

13.0 

8.69 

Young's modulus 

k6i 

272 
360 
51 
44 

10 
9-25 

4.5 
4.5 
3.6 
3.3 
3.7 
3.2 
2.4 
3.1 

2350 
m6o 
2100 
1980 
1810 
1390 
1480 
1620 
1300 
1380 
1280 
1220 
760 
770 
310 
310 
213 
211 
200 
270 
238 
250 

198 
207 
130 
130 
ll0 
100 
70 

24 
22 
21 
23 
18 

140 
1.58 
93 
ll0 
95 
91 
59 
55 
17 
13 
16 
13 
13 
13 

2 

GN/m2 

1.88 
2.48 

.35 

.P 

.ob38 

.ob90 

.031 

.025 

.023 

.026 

.022 

.017 

.021 

.031 

16.2 
14.2 
14.5 
13.7 
12.5 

10.2 
11.2 

9.58 

8.96 
9.52 
8.83 
8.41 
5.2 
5.3 
2.1 
2.1 
1.47 
1.45 
1.4 
1.9 
1.64 
1.7 

1-97 
1.43 

.90 

.90 

.76 

.69 

.48 

.bo 

. I5 

.17 

.I5 

.14 

. 16 

.12 

* 965 

.641 

.758 
* 655 
.627 
.407 
.379 
.11g 
.091 . l l o  
.OW 
.OW 
.OW 

1.09 

Y i e l d  
a t  0. 

P s i  

~ 

45.3 
34.7 

56 
85.3 

rength 
off set 

m/m2 

0.312 
.239 

.3@6 

.588 

T o t a l  
elongation, 

$ 

0.6 
.3 
1.44 
1.7 
3.6 
3.6 

4 3 . 6  
3.6 
2.4 
3.6 

4 3 . 6  
4 3 . 6  

2.8 
2.6 

.22 

.23 

.23 

.18 

.24 

.28 

.31 

.31 

.a 

.30 

.30 

.31 

.33 

.24 

.92 

.94 
1.06 
1.07 
1.38 

.72 

.75 

.65 

.34 

.30 

.52 
.37 
.58 
.61 
.96 
.64 
.41 
.60 
.31 
.42 
.32 
.33 

.32 

.39 

.54 

.47 

.44 

.57 

.92 

.68 

.34 

.52 

.33 

.42 

.u 

.12 

Poisson's 
r a t io  
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T W  8.- TEZSILE PROPEFZIE OF Low-DWSITY PHEIYOLIC-NYZON (SRI) 

Temperature 

-200 

-200 

-200. 

-100 

-100 

0 

0 

0 

0 

70 

70 

70 

70 

1.50 

150 

- 

- 
OK 

144 
__ 

144 

144 

200 

200 

255 

255 

255 

255 

294 

294 

294 

294 

339 

339 

__ 

Stress 

wm2 

2.06 

6.89 
9.65 
2.41 
4.82 
7.30 
9.860 
1.13 
2.84 
4.60 
6.06 

2.34 
4.89 
7.102 
8.964 
2.41 
4.06 
5.72 
7.033 

2.13 
3.93 
5.93 
7.504 
2.75 
4.55 
6.61 
8.136 
1.02 
2.74 
6.19 
7.584 
2.06 
5.51 
8.964 
u.17 

.638 
3.01 
5.41 
7.722 
1.43 
2.46 
3.33 
5.19 
3.17 
5.37 
7.516 
9.308 
3.51 
6.27 
8.964 

11.58 

4.48 
5.99 
7.240 
3.51 
5.86 
8.067 
9.929 

4.27 

3.10 

Axial 
strain 

0.0012 
.0024 
.0040 
.W% 
.0021 
.0044 
.0065 
.0087 
. o o u  
.0025 
.004J+ 
-0059 

.a321 

.0043 

. O O G  

.0087 

.0022 . 00% 

.0060 

.0077 

.0027 

.0050 

.OW7 

.0099 

.0026 

.0045 

.0066 

.0083 

.0012 

.0033 

.0074 

.W93 

.0023 

.m59 

.w94 . OU8 

.0010 

.0046 

.W79 

.On4 

.0015 

.0042 
a.0074 

.0047 

.oca0 

.on7  

. o w  

.0039 
.0069 
.0102 
.0133 

.0076 

.01& 

.0151 

.Olga 

.&5 

.Oll4 

.0169 

.0219 

.0029 

Lateral 
strain 

0.0000 
. o m  
. m o  
.om1 
.m 
.moo 
.o001 
.om1 . o m  
.mo 
.om . o m  

.ooo6 

.0010 

.0014 

.0018 

.OW3 

.0005 

.coca 

.0010 

.0002 

.m3 

.@335 

.om7 

.0010 

.0020 

.0029 

.0036 
(a) 

(a)  

(4 

(a)  

.0014 

.0024 

.0033 

.0043 

. m 9  

.0017 

.0024 

.0032 

.OOlz 

.00m 

.0031 

.0044 

.Wl9 
-0033 
.0041 
.0047 

Poisson's 
ratio 

0.00 
-00 
.00 
-02 
.00 
-00 
.02 
.01 
.00 
.oo 
.00 
.00 

.29 

.23 

.21 
-21 
.14 
.I3 
.13 
.I3 

.07 

.06 
-07 
.07 
.30 
.44 
.44 
.42 

(b) 

(b) 

(b) 

(b) 

.31 .w 

.28 
-29 
.23 
.24 
.23 
.24 

.16 

.18 

.2l 

.23 

.29 

.28 

.24 

.22 

Young' 8 
modulus 
- 
G " 2  

1.72 

1.17 

1.09 

1.10 

1.02 

.758 

1.03 

.931 

.945 

.68 

.827 

.670 

.965 

.42 

.57 

Yield strengtl 
a t  o.& offsei 

~ 

9.653 

9.860 

6.06 

8.964 

7.033 

7.584 

8.136 

7.584 

~ 1 . 1 7  

7.722 

9.032 

9.308 

U.58 

7.240 

8.550 

Ultimate 
strength 

ksi 

1.400 

1.430 

.880 

1.300 

1.020 

1.100 

1.180 

1.100 

1.620 

1.m 

1.310 

1.350 

1.680 

1.050 

1.440 

9.653 

9.860 

6.06 

8.964 

7.033 

7.584 

0.136 

7.584 

11.17 

7.722 

9.032 

9 . 9 8  

11.58 

7.240 

9.929 

Total 
elongation 

z 
0.56 

.%7 

.59 

.87 

.77 

.99 

.83 

.93 

1.18 

1.14 

(a) 

1.50 

1.33 

1.9 

2.19 

Load 
time tc 
rupture 

3% 

8 

393 

240 

270 

240 

300 

w 

210 

240 

180 

210 

240 

240 

330 

360 

%teral strain not monitored. 
bIndeterminate. 
'Specimen dried for 15 hours a t  2 0 0 O  F (366' K ) .  
%lip-on extensometer slipped off after strain of 0.0074. 



TABU 8.- "ETiSILE PROPERTIES OF LOW-DENSITY PHENOLIC-"ION (SRI) - Concluded 

Temperature 

OF 

250 

250 

250 

350 

350 

450 

450 

450 

450 

450 

500 

550 

550 

650 

700 

750 

OK 

394 

394 

394 

450 

450 

505 

505 

505 

505 

505 

333 

561 

j61 

516 

544 

572 

Stress 
~ 

Psi 

270 
500 
560 
620 
680 
260 
400 
540 
620 
670 
430 
660 
840 

1010 

I20 
m0 
250 
275 
19 
270 
300 
3m 

88 
104 
1.26 
146 
82 

118 
132 
150 
58 
98 
1x) 
150 
14 
54 
92 
146 
54 
90 

2 2  
150 

56 
95 

131 
164 

60 
98 

122 
146 
51  
74 

102 
126 

22 
39 
54 
63 

17 

15 

m/m2 

1.86 
3.44 
3.86 
4.27 
4.68 
1-79 
2.75 
3.72 
4.27 
4.62 
2.96 
4.55 
5.79 
6.964 

.827 
1.37 
1.72 
1.89 
1.31 
1.86 
2.06 
2.20 

.60 

.717 

.869 

.56 

.e14 

.910 
1.03 

.40 

.67 

.827 
1.03 
. 0% 
.37 
.63 

1.00 
.37 
.62 
.841 

1.03 

.38 

.65 

1.13 

1.00 

903 

.41 

.67 

.84 
1.00 

.35 
* 51 
* 703 
.%9 

.15 

.26 

.37 

.43 

.ll 

.10 

Axial 
s t ra in  

0.0065 
.ole3 
.0253 
* 0343 
.0441 
.m90 
.0174 
.0292 
. O W  
. O X O  
.0104 
.0158 
.0214 
.02% 

.0088 

.0177 

.0307 

.04% 

.0293 

.0501 
-0747 

.0169 

.0521 

.0618 

.07& 

.0924 

.0386 

.0585 

.0787 

. n i 9  

.Ob10 

.0714 

.lo43 

. I 9 3  

.0026 

.oil9 

.0246 

.0356 

.0152 

.0243 

.0334 
,0427 

.0222 
-0532 
.OB15 
.io78 

.0109 

.0208 

.0316 

.0467 

.0178 

.0261 

.0371 

. o m  

.0094 

.0169 

.0318 

.0254 

.----- 

Lateral 
strain 

0.0028 
.0053 
.0064 
.0078 
. 0090 . 0024 
.0043 .m1 
.W77 
.009 
.0028 
.0043 
.0057 
.0074 

.0010 

.0019 

.0033 
.0049 
.0017 
.0026 

.0054 

.OI28 

.0171 

.0229 

.0296 

.0039 

.oo* 

.0082 

.01% 

.0018 

.0030 
"7 
.OW 
.om7 
.0037 
.0061 
.0087 
.0064 
.Ol25 
,0198 

.0041 

.0299 

. O U 4  

.0222 

.0325 

.Ob32 

.0078 

.0160 

.0285 

.0426 

.0173 
-0303 
.0537 
.0737 

. o s 1  
-0343 
.OK3 
.0577 

--_--- 
--_--- 

Poisson's 
r a t io  

0.43 
-29 
.25 
123 
.20 
.26 
.25 
.21 
* 19 
.18 
.26 
.27 
.27 
.26 

.ll 

.11 

.ll 

.ll 

.098 

.OW 

.081 

.072 

.25 

.28 

.31 

.32 

.10 

.10 

.10 

.14 

.Oh3 

.Oh2 

.Oh5 

.047 

.27 

.31 

.25 

.24 

.42 

.52 

.59 

.70 

.56 

.42 

.40 

.40 

.72 

.77 

.9 

.91 

.97 
1.16 
1.45 
1.54 

2.79 
2.03 
1.82 
1.81 

---- 
---- 

PSI 

43 

28 

41 

14 

11 

1.8 

2.3 

1 . 4  

3.8 

3.6 

2.5 

5.4 

2.8 

2.3 

(b) 

(b) 

GN/m2 

~ . 2 9  

.I9 

.28 

. 0% 

.075 

. 012 

,015 

.0096 

.026 

.024 

.017 

.037 

.019 

.015 

_ _ _ _ _ _  
.----- 

Y i e l d  strength 
a t  O.+ offset  

ks! 

400 

390 

920 

210 

3m 

146 

82 

70 

146 

150 

63 

86 

126 

51 

(b) 

(b) 

m/m2 

2.75 

2.68 

6.34 

1.44 

2.20 

1.00 

.56 

.48 

1.00 

1.03 

.43 

.59 

.E69 

135 

---__ 
----- 

Ultimate 
st: - 

ksi 

0.680 

A70 

1.010 

.275 

.320 

.146 

.150 

.150 

.146 

.150 

.164 

.146 

.126 

.063 

.017 

.015 

gth 
MU fm2 

4.68 

4.62 

6.964 

1.89 

2 . a  

1.00 

1.03 

1.03 

1.00 

1.03 

1.13 

1.00 

.869 

.43 

.ll 

.10 

Total 
elongation, 

z 
4.41 

5.10 

2.86 

4.58 

7.47 

9.24 

11.19 

13.83 

3.56 

4.27 

10.78 

4.67 

4.80 

3.18 

(e )  

(f) 
- 

Load 
time t o  
N p t U l %  

8 

420 

450 

270 

240 

210 

150 

240 

240 

180 

270 

300 

210 

210 

330 

120 

180 

b k d e t e d n a t e .  
eExtensometer sfipped off a f t e r  s t ra in  of 0.085. 
fExtensometer slipped off a f t e r  stfain of 0.070. 



TABLE 9.- TENSILE PROPERITES OF FILLED SILICONE RESIN (SRI) 

) . 0002 
.OW4 
.coo7 . O O l C  
.ooo: 
.oou 
.0034 
.OO49 

.om1 

.OO02 
: .0003 
.----- 
._--__ 

.0032 

.o063 

.0109 

.0215 

.0030 

.or366 

.OW4 

.0240 

.0087 

.OW9 

.or68 

.1300 

.0145 
-0354 

.1>28 

.0160 

.0344 

.0938 

0787 

.0652 . Ll45 
(d l  
.0522 
. u 3 2  
* 1750 
(d l  
.OM6 
.0402 
* 1550 
.3300 

.om0 

.06X, 

.1432 

.Ohgo 

.13h 

.0164 

.io52 

-0193 

-0903 
-1 

.O 
0 
0 
0 
.O 
0 
0 
0 

0 
0 
0 
0 

------ 

.om1 

0 
.OW2 
.0003 

.0001 

.0005 

.0003 

.0006 

.0012 

.0044 
-0106 
.0186 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 

0 

---- 

.03 

.03 

.03 

.02 

.05 

.05 

.05 

.51 

.38 

. 33  

Stress 
Young ‘ s 
modulus 

lield strengt: 
d offse strength __ 

Total 
tlongati on 

z 
Load 

time t c  
rupture 

6 

_- 
OK 

144 
- 

144 

144 
144 

172 

172 

200 

?oo 

3 5  

255 

!55 

!94 

!94 

135 
338 
585 

b888 
681 

1720 
2170 
1880 

:2130 
113 
199 
334 

b517 
777 

102 
162 
212 

e252 
78 

152 
204 

b260 

32 
75 

114 
136 
156 
53 

110 
147 
165 

23 
42 
64 
77 

e91 
28 
53 
64 
69 
93 
26 
74 

117 
157 

30 
51 
59 
71 
30 
49 
62 
63 __ 

0.931 
2.33 
4.03 
6.12 
4.69 

11.85 
14.96 
E.96 
14.68 

.775 
1.37 
2.30 
3.56 
5.35 

* 70: 
1.11 
1.46 
1.73 

.53 
1.04 
1.40 
1.79 

.22 

.51 

.78 - 938 
1.08 

.36 

.758 
1.01 
1.14 

.16 
* 29 
.44 
.53 
.63 - 19 
.36 
.44 
.48 
.64 
.18 

.807 
1.08 

.21 

.35 

.41 

.49 

.21 

.34 

.43 

.43 

e 5 1  

_- 

6730 

11720 

6.73 

14.61 

.___-- 

1.31 

1.21 

.37 

.62 

-28 

.21 

.28 

.21 

* 23 

0.001 

.005 

( c )  
b~c .03  

e2. 15 

b2.40 

13 .o 

15.3 

7e11.5 

17.5 

33.0 

14.3 

13.4 

150 

180 

180 
330 

4m 

180 

330 

360 

330 

390 

480 

180 

240 

976 

1700 

(e )  
U O  

32 

26 

3.6 

3.7 

1.4 

1.7 

2.7 

1.85 

1-59 

7653 

2% 

180 

25 

25 

9.7 

12 

19 

12.8 

11.0 

aNo Lateral strain detected. 
%pecimen broke i n  grips. 
‘Wip-on extensometer slipped off. 
ahdeterminate. 
eSpecimen slipped out of grips before rupture. 
f h t e r a l  strain not monitored. 
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TABLF, 9.- TENSILE PROPEKPIES OF FILLED S I I J C O m E  RESIN (SRI) - Concluded 

x i a l  
t r a i n  

.0441 

.1425 

.1882 

.oj44 

.a965 

.16a  

. a 9 0  

.0925 

.Oh83 

.08E 

.1782 
-1269 

.0230 

.0652 

.io69 
-1737 

.0243 

.Oh83 

.1152 

.0274 

.0787 

.ob92 

.0702 

.0967 

.0413 

.1161 

.0@4 

.1447 

.0307 

.0632 

.0836 

.llO4 
----- 
----- 

. 

Cemperature Lateral 
strain 

0.0298 

.0721 

. o m  

.0292 

.0648 

.0982 

.1223 

.O5Z 

.0346 

.0473 

.0791 

.0655 

. o m  

.0234 

.0311 

.0376 

m 6 7  
.0102 

.0168 

.0142 

.oi33 

.0217 

.03u 

.040i 

.0105 

.0283 

.0193 

.0394 

.0201 

.0295 

.0379 

.Oh81 

(9)  

(9 )  
-. 

~ 

OK 

339 

539 

594 

594 

t50 

1.50 

j05 

a 5  

j61 

516 

Stress 

P s i  

43 
60 
70 
75 
33 
52 
62 
67 

29 
40 
46 
47 x 
52 
62 
68 

26 
40 
49 
54 
16 
25 
34 
45 

17 
28 
38 
45 
10 
17 
22 
26 

8.1 

5.3 

- 
wg 

0.30 
.41 
-48 
* 52 
.24 
36 

.43 .. 46 

.20 

.28 
* 32 
* 32 
.21 
.36 
.43 
.47 

.18 

.28 

.34 

.37 

.11 
* 17 
.23 
-31 

.12 

.26 

.31 
* 69 
.12 
* 15 
.18 

.Ogt 

.031 

oisson'g 
r a t i o  

0.67 
.% 
.51 
.47 - 85 
* 67 
.61 
* 58 

.71 

.58 

.52 

.44 

.53 

.36 
29 

.22 

.28 

.I7 

* 52 
.44 
.44 
.42 

.21 

* 25 
* 23 
.24 
.27 
.65 
.47 
.45 
.43 

---- 
---- 

Young's 
modulus 

ksi 

1.00 

1.08 

.63 

1.50 

1.13 

.62 

.46 

.35 

---- 
---- 

m/m2 

6.W 

7.4: 

4.3 

10.3 

7.74 

4.3 

3.2 

2.4 

---- 
---- 

' ield strength 
r t  0.2$ offset  

N/m2 
~ 

0.31 

.20 

.21 

.24 

.21 

.12 

.12 

.083 

----- 
----- 

U l t i m a t e  
strt 

Psi  

75 
~ 

67 

47 

68 

54 

45 

45 

26 

8.1 

5.: 

t h  

N/m2 

0.52 

.46 

* 32 

.47 

.37 

* 31 

* 31 

.18 

. o5t 

.031 

Total 
longation, 

$ 

18.8 

a . 9  

17.8 

17.4 

11.5 

9.7 

14.5 

11.0 

---- 
---- 

Load 
; i m e  t o  
vp ture  

8 

420 

480 

360 

330 

300 

300 

330 

240 

--- 
--- 

%alibratlon specimen. 
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TABLE 10.- COMPRESSIVE PROPERTIES OF SIX CHARRrNG ABLA!l’ORS (MELPAR) 

AbLetion mateHal 

High-density phenolic- 
nylon 

Low-density phenolic- 
nylon 

I 

Fil led silicone resin 

resin 

Temperature 

OF 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
200 
300 
500 
400 
400 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
200 
300 
300 
400 
400 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

150 
150 
200 
XM 
300 
300 
400 
400 
500 
500 
600 
600 
700 

-200 
-200 
-lo0 
-100 

0 
0 

75 
75 
200 
200 
300 
300 
400 
400 
500 
500 
600 
600 
700 
700 

- 
OK 

144 
144 
200 
200 
255 
255 
297 
297 
366 

422 
477 
477 

144 
144 
200 
200 
255 
255 
297 
297 
366 
366 

477 
477 

2:: 

422 
422 

144 
144 
200 
200 
255 
255 
297 
297 
338 

366 

422 
477 
477 
533 
533 
588 
588 
644 

144 
144 
200 
200 
255 
255 
297 
297 
566 
366 
422 
422 
477 
477 
533 
R3 
j88 
$8 
544 
544 

338 

22 

U l t i m s t e  strengt2 

ksi 

36.04 
33.20 
27.20 
28.48 

826.88 
30.00 

a21.20 
819.60 

12.04 
‘15.02 
a5.52 
a5.20 
a2.32 
a2.60 

5.000 
5.240 
4.010 
3.540 
4 . 1 9  
3.680 
3.560 
3.912 

a3.020 
2.670 

a2. 940 
2.880 

a2. 490 
a2.3cil 

c.760 
c1.000 

275 
235 

.212 

.204 
c.280 
c . 270 
‘-275 
c.260 
c.210 
c.225 
c . 272 
C.220 
c.176 
c .168 

.172 

.I96 

.078 

.loo 

.027 

.832 
c.348 
c.386 
c.300 
e .  310 

c.296 
c.306 

c.267 
. r 6  
.216 
.228 
.188 

.088 

.090 

.024 

.028 

c.285 

c.311 

.183 

m/m2 

248.5 
228.9 
187.5 
196.4 
185.3 
m6.8 
146.2 
135.1 
83.02 

103.6 
38.1 
35.9 
16.0 
17.9 

34.5 
36.1 
27.6 
24.4 
28.9 
25.4 
24.5 
27.0 
20.8 
18.4 
20.3 
19.9 
17.2 
15.9 

5.24 
6.90 
1.90 
1.62 
1.46 
1.41 
1.93 
1.86 
1.90 
1.79 
1.45 
1.55 
1.88 
1.72 
1.21 
1.16 
1.19 
1.35 

.54 

.69 

.I9 

6.62 
5.74 
2.40 
2.66 
2.07 
2.14 
1.97 
2.04 
2.11 
2.14 
1.84 
1.90 
1.49 
1.57 
1.50 
1.26 
.61 
.62 
.16 
* 19 

Young‘s modulus 

ksi 

860 
W.0 
910.0 
730.0 
715.0 
705.0 
605.0 
460.0 
195.5 
238.0 
80.0 
78.0 
9.0 
30.0 

242.0 
184.0 
189.0 
136.0 
187.0 
u 9 . 0  
139.0 
151.0 
~ 1 . 5  
128.0 
51.0 
47.0 
33.3 
XJ.0 

12.x 
1 3 . 6 ~  
3.00 
3.10 
2.20 
2.50 
2.10 
2.a  
2.30 
2.10 
2.00 
2.40 
2.w 
2.00 
3.00 
2.60 

.78 

.68 

.31 

.29 .a 
10.00 
14.00 

2 2  
4.20 
4.00 
3.50 
3.60 
3.80 
3.80 
3.00 
3.10 
2.50 
2.80 
1.80 
1.70 

.80 

.74 

.48 

.39 

GN/m2 

5.93 
6 . u  
6 . q  
5.03 
4.93 
4.86 
4.17 
3.17 
1.35 
1.64 
.55 
.54 
.21 
.21 

1.66, 
1.27 
1.30 

.938 
1.29 
1.51 

.958 

.769 

.e82 

. 3 w  

.320 

.230 

.2lo 

.0861 
-0938 
.0207 
.0214 
.0152 
.0172 

1.04 

.0145 

.0152 
* 0159 
.0145 
.0138 
.0165 
.0159 . o m  
.0207 
0179 

.0054 

.0047 

.0021 

.0020 

.0014 

.069 

.097 

.026 

.029 

.029 

.028 

.024 

.025 

.026 

.026 

.021 

.021 

. o q  

.019 

.ox? 

.ox2 

.0055 

.0051 

.W33 

.0027 

Y i e l d  
a t  0. 

ksi 

19.20 

18.88 
18.40 
15.60 
18.80 
9.08 

11.30 
3.82 
4.76 
1.76 
1.60 
1.20 

* 92 

------ 

---__- 
-__--- 
2.750 
3.040 
2.7% 
2.560 
2.448 
2.488 
1.080 
1.440 
1.400 
1.320 
1.200 
1.040 

.300 

.440 

.144 

.I24 

.136 

.128 

. U 4  

.u2 

.144 

.140 

.I28 

.m 

.l28 

.m 

. O* 

. lo4 -___-_ 
------ ---_-- 
------ 
------ 

.540 

.400 

.140 

.160 

.176 

.168 

.152 

.152 

.la 

.160 

.184 

.Go  

.152 

.128 

.168 

.168 _--__- 
_----- 
__--_- 
_----- 

rength 
off s e t  

wg 
132 

130 
127 
108 
130 

------- 

62.6 
77.9 
26.3 
32.8 
12.1 
11.0 
8.2 
6.3 

---_--- 
19.0 
21.0 
18.9 

16.9 
17.2 
7.45 
9.93 
9.65 
9.10 
8.30 

17.7 

7.17 

2.10 
3.00 

.993 

.e55 

.938 

.883 

.-I86 

.772 

.993 

.965 

.m3  

.827 

. a 3  

.827 

.662 

.717 

--- -- -- 
3.7 
2.8 

.97 
1.1 
1.21 
1.16 
1.05 
1.05 
1.10 
1.10 
1.27 
1.10 
1.05 

1.16 
1.16 

.m3  

T o t a l  
compression 

z 
4.5 
6.6 
5.0 
4.6 

4 7 . 2  
5.6 

4 7 . 2  
47 .2  

4 7 . 2  
$7.2 
4 7 . 2  
4 7 . 2  
4 7 . 2  

7.2 

2.2 
3.0 
2.7 
2.8 
2.4 
3.0 
4.0 
5.0 

4 7 . 2  
6.6 

4 7 . 2  

4 7 . 2  
4 7 . 2  

_ _ _ _ _ _  

40.4 
44.4 
35.2 
29.8 
20.6 
17.0 
70.8 
68.4 
59.4 
61.2 
55.4 
59.0 
35.0 
34.4 
31.8 
9 - 0  
19.6 
17.4 
11.6 
17.8 

21.8 
23.0 
41.0 
26.8 
28.6 

32.8 
28.6 
28.4 
25.8 
22.4 
21.0 
14.0 
14.0 

20.0 

25.4 

12.6 
13.0 
11.0 
11.8 
6.2 

14.0 

a ~ h ”  stress .  
bgtrain not recorded beyond 7.8.  
CStress a t  20% strain. 
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TABLE 10.- COMPRESSIVE PROPERTIES OF SIX CHARRWO ABLilToRS (MELPAR) - Continued 

Ablation material 

.- 

I Fi l led  s i l icone resin 

F i l led  silicone resin 
in honeycomb; 
direction C 

Carbon-fiber- 
reinforced phenolic 
(Narmco 4028) 

Fi l led  epoxy i n  
honeycomb (Avcoat 
5026-39/EC G) ; 
direction A 

Temperature 

OF 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
200 
300 
m 
400 
400 
500 
500 
600 
600 
700 
700 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

200 
a 0  
300 
300 
400 
400 
500 
500 
600 
603 
700 
700 

-200 
-200 
-100 
-100 

0 
0 

75 
75 
m 
200 
P O  
300 
400 
400 
500 
500 
600 
600 
700 
700 
750 
750 

-200 
-200 
-100 
-100 

0 
0 

75 
75 
XI0 
200 
300 
300 

144 
144 
200 
200 
255 
255 
297 
297 
366 

422 
477 
477 
533 

588 
644 
644 

144 
144 
200 
m 
255 
255 
297 
297 
366 

422 

% 

E 
477 
477 
533 
533 
588 

644 

144 
144 
200 
200 
255 
255 
297 
297 
366 
366 
422 
422 
477 
477 
533 
533 
588 

644 
671 
671 

144 
144 
m 
m 
255 
255 
297 
297 
366 
366 
422 
422 

2: 

2 

Ultimate strength 

ksi 

CO .750 
c .710 

.335 

.272 

.252 
'.325 '. 329 
=.382 
c.360 
c.290 
'-307 
c.240 
C .245 

. a 4  

.220 

.I22 

. l l 4  

.064 

.Ob 

1.900 
1.900 

.930 

.820 

.800 

.735 

.728 

.780 
~ 7 9 0  
.685 
.783 
.795 
.735 
.690 
.395 
.410 
.270 
.250 
.w5 
.335 

:. 375 

45.00 
51.50 
47.00 
47.00 
41.00 
46.80 
48.80 
51.30 
40.00 
40.50 
34.20 
32.20 
23 * 30 
24.00 
16.70 
18.00 
14.80 
15.60 
19.35 
18.50 
16.50 
15.20 

1.960 
1.910 
1.280 
1.400 
1.020 

,995 
1 . l lo  
1.050 

.%5 

.220 

.086 

.162 

~ / m 2  

5.17 
4.90 
2.59 
2.31 
1.88 
1.74 
2.24 
2.27 
2.63 
2.48 
2.00 
2.12 
1.65 
1.69 

1.52 
.841 
.786 
.44 
.28 

13.10 

5.65 

1.41 

13.10 

6.41 

5.52 
5.07 
5.02 
5.38 
5.45 

5.40 
5.48 
5.07 
4.76 
2.72 
2.83 
1.86 
1.72 

4.72 

2.10 
2.31 

310 
355 
324 
324 
283 
323 
336 
354 
q 6  
279 
236 
222 
l 6 1  
165 
115 
124 
102 
108 
133 
128 
114 
105 

13.5 
13.2 
8.83 
9.65 
7.03 
6.86 
7.65 
7.24 
1.83 
1.52 

.59 
1.12 

Young's modulus 

ksi 

9.50 
8.00 
3.50 
4.20 
3.60 
4.40 

3.50 
2.90 
3.80 
2.60 
3.10 
2.20 
2.80 
1.40 
1.70 

.33 

.33 

.40 

3.10 

.20 

57.0 
65.0 
63.0 
58.0 
40.3 
35.6 
35.5 
41.0 
44.0 
35.0 
41.5 
50.0 
32.0 
37.0 
35.0 
30.0 
21.8 
24.0 
39.0 
45.0 

18jO 
1700 
1380 
1580 
1200 
1600 
le00 
1650 
1030 
910 
990 
900 
610 sso 
290 
330 
250 
250 
375 
320 
289 
275 

61.0 
63.0 
85.0 
78.0 
76.0 
63.0 
87.0 
83.0 
13.2 
10.8 
8.0 

10.8 

GR/m2 

0.065 
.055 
.024 
.029 
.025 
.030 
.021 
.024 
.020 
.026 
. O M  
.021 
.015 
.01g 
.0097 
.o i l7  
.a323 
.0023 
.0014 
.0028 

.393 

.44a 

.434 

.400 

.278 

.245 

.245 

.283 

. P 3  

.2kl 

.286 

.345 

.221 

.255 

.241 

. a 7  

.150 

.165 

.269 

.290 

12.6 
11.7 

10.9 
9.52 

8.27 
11.0 
12.4 
l l . 4  
7.10 
6.30 
6.80 
6.20 
4.20 
4.00 
2.00 
2.30 
1.70 
1.70 
2.59 
2.20 
2.00 
1.90 

.42l 

.434 

.586 

.538 

.524 

.434 

.600 

.572 

.09l 

.074 

.055 

.074 

Yield 
a t  0.2: 

ksl 

0.360 
.280 
.176 
.200 
.136 
.l60 
.152 
.144 
.192 
.152 
.152 
.152 
. E o  
. E 4  -___-- _____- -___-- --__-- 

ength 
f f s e t  

W& 
2.5 
1.9 
1.a 
1-97 

1.10 
1.05 

1.05 
1.05 
1.05 

.938 

-992 
1.32 

.827 

.E55 

------- 
10.20 
9.79 
5.58 
4.90 
4.59 
3.93 
4.96 
5.70 
5.03 
4.48 
5.34 
5.41 
4.86 
4.65 

-- - _ _  _ _  

- - - -_-_ 
218 
234 
214 
217 
145 
145 
97.0 
97.0 
98.6 
90.3 
97.9 

94.5 

86.2 
86.9 

10.3 
10.3 

101 

108 

7.52 
7.58 
5.10 
6.40 
6.40 
6.1 
1.8 
1.5 

Total 
compression, 

z 
31.0 
50.0 
43.0 
35.6 
19.4 
12.8 
46.2 
41.2 
25.8 
35.6 
37.0 
38.4 
25.4 
24.0 
14.2 
15.0 
15.6 
18.4 
23.0 
9.8 

5.2 
5.0 
4.6 
3.6 
3.4 
3.6 
3.0 
2.4 
2.3 
2.2 
2.2 
2.0 
2.8 
2.3 
1.3 
1.6 
1.2 
1.2 

.8 
1.0 

1.7 
3.2 
4.2 
3.8 
4.8 
3.7 
4.2 
5.0 
6.7 
7.6 
8.3 
8.1 
7.9 
8.7 
8.3 
8.7 
8.0 
8.6 
8.0 
8.2 
7.5 
7.3 

7.2 
4.8 
4.5 
5.2 
4.6 
3.2 
3.0 
3.2 
2.9 
5.5 
2.5 
1.9 

'Stress a t  X$ strain. 
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TABLE 10. - COMPRESSIVE PROPERTIES OF SIX CHARRING ABLATORS (MEWAR) - Concluded 

. . 

I Temperature 
Ablation mater ia l  

.. 

Pilled epoxy i n  
honeycomb (Avcoat 
5026-39/HC G )  ; 
di rec t ion  B 

Filled epoxy i n  
honeycomb (Avcoat 
5026-39/HC G )  ; 
di rec t iqn  C 

- 
OF 

-200 
-200 
-100 
-100 

0 
0 

___ 

75 
75 

200 
200 
300 
300 
400 
400 

-200 
-200 
-100 
-100 

0 
0 

75 
75 

115 
115 
150 
200 
200 
300 
300 
400 
400 
450 
450 
500 
500 
600 

- .. 

OK 

144 
144 
200 
200 
255 
255 
297 
297 
366 
366 

477 
477 

422 
422 

144 
144 
200 
200 
255 
255 
297 
297 
319 
319 
338 
366 
366 

477 
477 
505 
505 
533 
533 
588 

422 
422 

____ 

lltimate strengtf 

ksi 

2.00c 
1.79c 
1 * 75C 
1.43C 
1.48C 
1 . 6 3 ~  
1 . 3 8 ~  
1 . 2 7 ~  

. 4 0 C  

.316 

.324 

.28c 

.e14 

.254 

2.270 
2.300 
1.800 

1.610 

1.650 
1.600 

* 735 
.710 
.585 
.410 
.450 
.360 
- 390 
.420 - 455 
.322 
.280 
.302 

.180 

1 * 525 

1 770 

.314 

13.8 
12.3 
12.1 

10.2 
11.2 

9.86 

9.52 
8.76 
2.80 
2.18 
2.23 
1.90 
1.48 
1.75 

15.7 
15.9 
12.4 
10.5 
11.1 
12.2 
11.4 
11.0 
5-07 
4.90 
4.03 
2.83 
3.10 
2.48 
2.69 
2.90 
3.14 
2.22 
1.93 
2.08 
2.16 
1.24 

- -. - -. . - 

Young's modulus 

ks i  

53.0 
58.0 
70.0 
68.0 
81.0 
82.0 
71.0 
72.0 
9.40 
8.80 
8.00 
6.60 
7.20 
8.60 

122.5 

98.0 
89.5 
83.5 
82.0 
86.0 
90.0 
55.5 
62.0 
50.7 
26.0 
30.0 

16.9 
27.2 

23.0 
20.7 
32.6 
27.8 
17.0 

114.0 

13.7 

22.4 

_ _  

GN/m2 
___- 

0.365 
.400 
.483 
.469 
.558 
-565 
-490 
.496 
.065 
,061 - 055 
.046 
.050 
059 

.8446 

.786 

.676 

.617 

.576 

.565 

.593 

.621 

.383 

.427 
* 350 - 1-79 
.207 
-0945 
.117 
.1875 
.154 - 159 
.143 
.225 
.192 
.117 

-. .... 

. - -. - . 

Yield strengtk 
3t 0 . ~ 4  of f se t  

-. 

ks i  
__ 
I.. 280 
1.380 
1.180 
.800 

1.030 
1.060 - 970 

* 930 
.284 
.e30 
.260 
.248 
.204 
.226 

-----. 
-----. 
-----_ 
_--___ 
------ 
---___ 
1.320 

.650 

.630 - 555 

.302 

.375 

.340 

.376 

.415 

.450 

.264 

.246 

.290 

.240 

.094 

1 - 530 

- .- 

._ 

m/m2 
-- 

8.83 
9-52 
8.14 
5.51 
7.10 
7 - 3 1  
6.7 
6.4 
1.96 
1.59 
1-79 
1.71 

1.56 
1.41 

___--- 
------ 
_----- 
__---- 
__-_-- 
------ 
9.10 

10.5 
4.48 
4.34 
3.83 
2.08 
2-59 

2.59 
2.34 

2.86 
3.10 
1.82 
1.70 
2.00 
1.65 

.65 
. _- 

Total 
:ompression, 

% 

10.5 
8.7 

10.2 
8.2 
5.9 
6.7 
6.8 
6.0 

12.0 
9.9 
6.0 
5.2 
4.1 
3.8 

3.4 
3.4 
2.9 
3.3 
3.1 
3 .3  
3.2 
2.7 
2.3 
1.8 
2.2 
2.6 
2.4 
3.0 
3.0 
2 .1  
3.0 
2 - 3  
2-3 
1 .7  
2.0 
2.0 
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TABLE ll.- COMPRESSIVE PROPEKPIES OF LOW-DmSTPY PHENOLIC-IYYLON (SRI) 

'emperatwe 

OK 

144 

144 

200 

200 

255 

255 

294 

294 

339 

339 

394 

394 

450 

450 

S t r e s s  
- 
kei 

1.800 
3 . m  
4.930 
6.580 
1.280 
2.530 
3.730 
4.650 

1.580 
3.050 
4.330 
5.080 
1.580 
3.050 
4.430 
5.450 

1.430 
2.350 

4.250 
4.030 
1.680 
3.280 

3.600 

4.780 
5.380 

2.630 
1.375 

4.030 
4.500 
4.400 
1.500 
2.450 
3.550 
3.830 
3.630 

1.860 
2.860 
3.480 
3.740 
3.950 

.900 
1.720 
2.560 
3.400 
3.500 

.a10 
1.550 
2.390 
2.800 
3.140 

,920 
1.630 
2.530 
2.800 
3.100 

.795 
1.382 
1.922 
2.330 
2.970 

.667 
1.150 
1.610 
1.905 
2.230 

__ 
w.er/m2 
12.41 
24.00 
33.99 
45.37 

17.44 
25.72 
32.06 

10.8g 
21.03 
29.85 
35.03 
10.89 
21.03 
30.55 
37.58 

8.826 

9.860 
16.20 
24.82 
a.30 
27.79 
11.58 
22.62 
32.96 
37.10 

9.479 
18.13 
27.79 
31.03 
30.34 
10.34 
16.89 
24.48 
26.41 
25.03 

12.83 
19.72 
23.99 
25.79 
27.24 
6.21 

11.86 
17.65 
23.44 
24.13 

5.59 
10.69 
16.48 
19.31 
21.65 
6.34 

11.24 
17.44 
19.31 
21.37 

5.48 

13.25 
16.06 
20.48 
4.60 
7.929 

11.10 
13.14 
15.38 

9.529 

Axial 
s t r a i n  

0.0053 
. O l M )  
.0141 
.0205 
.0040 
.0081 
.Ol24 
,0190 

.0061 

. o m  

.0179 
-0253 
.Or264 
.OX24 
JJl93 
.0298 

.0101 

.0178 

.0312 

.Ob57 

.0468 

.oow 

. o m  

.0315 

.0458 

.0107 

.0244 

.Ob0 

.0643 

.0695 

.0124 
,0219 
,0411 
.06q  
.0678 

.0212 

.0377 
,0576 
.OB15 
.1120 
.0106 
.0200 
.0309 
.0553 
.0795 

.0147 

.0294 

.0732 

.1460 

.2300 

.0165 

.0301 

.0653 

.0945 

.16h  

.0153 

.0294 

.0550 

.lo61 

.l910 

.01p 

.0318 

.&27 . l l05  

.I995 

L a t e r a l  
s t r a i n  

0.0026 
.0042 
.0058 
.0080 
.0014 
.00w 
.0047 
.m63 

.0022 

.0041 

.0061 

.0078 

.0025 

.0042 

.0059 

.0081 

.W37 

.0056 

.0087 

. o n 0  

. o n 1  

.0036 

.0061 

.cog1 

.0110 

.0040 

.0061 

.0101 

.0137 

.0144 

.0035 

.0056 

.0096 

.OU3 

.0143 

.0042 

.OUT 

.0154 

.0204 
,0018 
.0041 
.0064 
.0108 
.0147 

.0042 

.OW3 

.0197 

.0366 

.0600 

.0026 

.0061 

.0148 

.0216 

.o352 

.0072 

. o n 5  

.0187 

.0334 

.06i8 

.or263 

.0106 

.Olga 

.0335 

.0652 

Poisson's 
r a t i o  

0.49 
.42 
.41 
.39 
.35 
.37 
.38 
.33 

.36 

.34 

.34 

.31 

.39 

.34 

.31 

.27 

.37 

.31 

.28 

.24 

.24 

.40 

.33 

.29 

.24 

.37 

.34 

.25 

.21 

.21 

.28 

.26 

.23 

.20 

.21 

.20 

.20 

.21 

.27 

.25 

.I7 

.20 

.21 

.m 

.I9 

.28 

.25 

.27 

.25 

.26 

.16 

.20 

.23 

.23 

.22 

.47 

.39 

.34 

.32 

.32 

.36 

.33 

.30 

.30 

.33 

Young' s 
modulus 

h i  

360 

310 

250 

240 

140 

180 

130 

120 

89 

86 

56 

55 

54 

40 

- 
mi2 
2480 

2130 

1720 

1650 

965 

1240 

896 

827 

610 

590 

380 

380 

370 

280 

Yielc 
a t  0. 

P s i  

6580 

4630 

4630 

4750 

3230 

4070 

2900 

2800 

2450 

2900 

1120 

1748 

1175 

1020 

t r eng t f  
; o f f s e t  
~ 

ws 
45.37 

31.92 

31.92 

32.75 

22.27 

28.06 

20.00 

19.31 

16.89 

20.00 

7.722 

12.05 

8.102 

7.033 

~ 

Ult imate  
s t r e n g t h  

kei 

6.580 

4.650 

5.080 

5.450 

4.250 

5.380 

4.500 

3.830 

3.950 

3.500 

a3. 080 

3.100 

a2.970 

52.230 

~ 

- 
WG ~ 

45.37 

32.06 

35.03 

37.58 

29.30 

37.09 

31.03 

26.41 

27.24 

24.13 

21.24 

21.37 

20.48 

15.38 

T o t a l  
compression, 

z 
2.05 

1.90 

2.53 

2.98 

4.68 

4.58 

6.95 

6.78 

11.20 

7.95 

23 

16.4 

19.1 

20 

Load 
t i m e  t o  
rupture ,  

5 

300 

330 

300 

300 

330 

330 

360 

360 

390 

300 

1200 

1200 

450 

420 

a s t r e s s  at  X@ s t r a i n .  
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I I 11111 11111 111111111111111 I I I I I 11111 111 1,11111.. ,I I 1 1 1 1 . 1  I I ,  

Pemperaturc Stress 
~ 

h i  

0.605 
1.210 
1.440 
1.525 
1.123 

.615 

.795 

.%5 
1.072 
1.225 

. u 3  

.220 

.343 

.4m 

.4m 
-0175 
.115 
.E35 
.270 
.3@ 
.474 

.126 

.188 

.266 

.350 

.404 

.bo 

.456 

.150 

.232 

.m 

.410 

.520 

.Om4 

~- 

.OM7 

.0526 

.0586 

.0388 

.0326 

.Ob30 

.0510 
.OB42 
.I22 
.I9 
.181 
.0169 
.0245 
.0291 
.0321 
-0392 
. o m  
.0510 

k/m2 

4.17 
8.34: 
9.93 

10.52 
ll.88 
4.24 
5.48 
6.65 
7.391 
8.446 

. n 9  
1.52 
2.36 
2.90 
2.90 

1.21 
1.62 
1.86 
2.68 
3.27 

1.30 
1.83 
2.41 
2.79 
2.76 
3.14 
1.03 
1.60 
2.07 
2.83 
3.59 

.534 

.869 

.141 

.281 

.363 

.404 

.296 

.268 

. E 5  

.352 

.91 

.841 
1.09 
1.25 . =7 

.169 

.201 

.221 

.270 
-317 
.352 

TdBLE 11. - C o M p R B s s l y E  PROPERTIES OF LOU-DENSITY PIIENOLIC-NYLON (SRT) - Concluded 

Axial 
strair 

0.018.8: 
-037.8: 
.071: 
.lo45 
.200c 
.0294 
.05X 
.0972 
.1433 
.2003 

.0094 

.0303 

.1325 

.EO05 

.0177 

.Ob18 

.0690 

.lo88 

.I575 

.ZOO5 

. o m  

.0336 

.0712 

.low 

.1320 

.17W 

.ma 

.0247 
-0435 
.0710 
.1340 
.m1 

.OO& 

.0127 

.0315 

.0705 

.I205 

.lbl5 

.2000 

. o m  
-0197 
. o m  
.08b 
.1@5 
.0108 
.0223 
.ob6 
.om2 
.I315 
.1735 
.2000 

.0815 

Lateral 
strain 

0.0048 
.0159 
.0350 
.0437 
,1065 

.0252 

.0434 

.640 

.09E 

.ooo6 

.0024 

. o u 3  

.0225 

. O W  

.0048 

.W68 

.0132 

.OB2 

.0005 
. m 9  
.0036 
.m59 . o m  
.0136 
.0l73 
.0016 
.003l 
.m52 
.0147 
.0260 

b- .om5 
-.0010 - .0019 
-.0060 - . o m  
-.0147 
- .0200 

0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

.0147 

.0224 

.0318 

' 0  

. OW4 

-~ - 

Poisson' s 
ratio 

0.26 
.43 
.49 
.42 
.52 
.50 
.46 
.45 
.45 
.46 

.OI 

.08 

.14 

.I1 

.EO 

.27 . 16 

.I9 

.21 

.20 

.I9 

.03 
.03 
.05 
.05 
.ob 
.08 
.08 
.OI 
.07 
.07 
.ll 
.13 

C-.lz 
-.a 
-.06 
-.09 
-.lo 
-.09 
-.lo 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

. 

Young' 6 
modulus - 

ksi 

32 

21 

12 

4.4 

6.7 

6.5 

4.3 

4.8 

1.6 

-. 

- 
w=2 

220 

140 

83 

30 

46 

45 

30 

33 

ll 

trength 
offset 

~i/m2 
-. 

8.274 

2.41 

.903 

1.09 

1.03 

1.45 

.21 

.62 

.15 

__ 

Ultimate 
stre 

*Stress at 20s strain. 
bpost examination of specimen revealed slight indentation from scissors. 
CIJegative values due to negative vaiues of lateral strain resulting from degradation phenomena. 
dSpecimen overheated to 775O F ( 6 8 6 O  K ) ,  cooled to 750' F (672' K), and tested to 14.35 strain. 
eScissor force reduced. 

lcsi 

a1.725 
- ~- 

a1.225 

a.420 

a.474 

8.456 

a.520 

a.0326 

.181 

a.051 

th 

w1q2 

11.89 

8.446 

2.90 

3.27 

3.14 

3.59 

.225 

1.25 

.35 

Total 
compression, 

z 
20.0 

20 

20 

20 

20 

20 

m 

14.3 

20 

Load. 
time to 
rupture 

5 

300 

360 

540 

480 

510 

450 

540 

300 

452 

. . . I I I ,  
I 



TABLE 12.- COMpIlESSrvE PROPEI(PIFS OF FI- SILICONE KESIA (SRI) 

Temperature 

OF 

-200 

-200 

-200 

'-200 

:-170 

-100 

-100 

-100 

-100 

-100 

0 

0 

70 

70 

9( 

144 

144 

144 

144 

161 

200 

200 

?oo 

!00 

!oo 

!55 

!55 

!94 

'94 

Stress - 
bi 

0.348 
.615 
,872 

1.000 
1.065 
1.3W 
1.485 

.256 

.343 

.512 

.665 

.758 

.154 

.3@6 

.601 

.854 

.w 

.5@J 
1.100 
1.450 
1.560 
1.W 

.143 

.415 

.686 
1.135 
1.290 

,082 
.182 
,300 
.382 
.500 
.172 
.241 
.342 
.422 
.568 
.7(3 
.863 . u5 
,200 
.285 
.345 
.425 
.505 
.550 
.0718 
,154 . =5 
.307 
.333 
.c60 
. 153 
.265 
.321 
.395 

.085 

.I55 

.212 

.244 
,273 
.077 
.I36 
.196 
.237 
.266 

.074 . =5 

.160 

.204 

.2m 

.080 . m 
* 195 
. 2 9  
.2& 

m/m2 
2.40 
4.24 
6.01 
6.895 
7.343 
9.170 

10.24 
1-77 
2.37 
3.53 
4.59 
5.23 
1.06 
2.66 
4.14 
5.89 
6.76 
3.92 
7.584 
9.998 
10.76 
12.41 

.986 
2.86 
4.73 
7.826 
8.895 

.56 
1.25 
2.07 
2.63 
3.45 
1.19 
1.66 
2.36 
2.91 
3.92 
5.29 
5.95 

1.9 
1.96 
2.38 
2.93 
3.48 
3.79 

1.06 
1.55 
2.12 
2.30 

.41 
1.05 
1.83 
2.21 
2.72 

.59 
1.07 
1.46 
1.68 
1.88 

.53 

.937 
1.35 
1.63 
1.83 

.51 
-792 

1.10 
1.41 
1.59 

-55 
.e96 

1.34 
1.64 
1.79 

.793 

.495 

M a l  
i t ra in  

,.0040 
. O W  
.03% 
.0622 
.0910 
.1425 
.21m 
.0265 
.Oh77 
.io25 
.1500 
.1980 

,0620 
.1850 
.2010 
.eo65 
.0147 
.OW9 
.0692 
.2050 

.0059 .01w 

.0332 

.0927 
,2000 

,0122 
.0344 
.0745 . 1220 
,2150 
.0138 
.0217 
.0422 
.0666 
.1130 
.2160 

.oca9 

.0274 

.2700 

.0189 

.0370 

.0555 

.0955 

.I550 

.0235 

,1001 
.1505 
,1950 
.0103 
.0317 
. o m  
.E20 
.2050 

.0355 

.0712 
,1140 
.1510 
.2020 
.0344 
.0656 
.lo78 

.a370 

. 0 5 ~  

.1498 

.2ooo 

,0378 
,0595 
.0918 
.1520 
.2llo 
.03U 
,0578 
,1042 
.I585 
,2040 

Jkteral 
strain 

0.0037 
.Ou)5 
.0266 . 0460 
.OW5 
.OB08 
.0950 
.ooo2 
.OW3 
.0004 
.@335 
.coo6 
.0002 
.m5 
.0007 
.0022 
.0063 
.om5 
.OW6 
.ow7 
.0052 
.0555 

0 
.coo1 
.coo2 
.ooO6 
.0035 

,0042 
,0115 
.0250 
.Ob25 
.0955 

0 
0 

.0006 

.0011 

.0072 

.0686 

.O&O 

.0061 . 0140 

.0224 

.0305 

.0467 

.0705 

.0825 

.01ll 
,0240 
.0443 
.0610 
.0930 
,0005 
.0051 
.0148 
,0280 
.0465 

.01ll 
,0249 
,0419 
.0550 
.0797 
.0092 
.0236 
.0385 
.0583 
.0790 

.0071 

.0160 

.0242 

.0327 

.0384 

.0136 

.0232 

.0399 
-0582 
.07m 

Poisson's 
r a t i o  

0.92 
.e3 
.79 
,74 
.77 
.56 
.45 

0 
0 
0 
0 
0 

.03 

.02 

.01 

.01 

.03 

.08 

.04 

.02 

.08 

.27 
0 
0 
0 
0 

.02 

.34 

.33 

.34 

.35 

.44 
0 
0 

.02 

.02 

.06 

.32 

.32 

.6a 

.74 

.60 

.55 

.49 

.46 

.40 

.47 

.47 

.44 

.41 

.48 

.05 

.16 

.19 

.23 

.23 

.31 

.35 

.37 

.36 

.39 

.27 

.36 
* 36 
.39 
.40 

.I9 

.27 

.26 

.22 

.18 

.44 

.40 

.38 

.37 

.9 

Young's 
modulus 

ha1 

87 

9.9 

20 

88 

25 

6.6 

12.6 

13.5 

2.9 

5.8 

2.3 

2.2 

2.0 

2.6 

m/m2 
600 

68 

140 

610 

170 

46 

86.9 

93.1 

20 

40 

16 

15 

14 

18 

Yield 
at  0.: 

Psi 

450 

250 

300 

1120 

600 

140 

235 

180 

180 

110 

140 

98 

1x) 

110 

,rength 
offset 

MN/& 

3.10 

1.72 

2.07 

7.722 

4.14 

.965 

1.62 

1.24 

1.24 

,758 

,965 

.68 

.a27 

.758 

Ultimate 
str 

ks i  

a1.485 

a.758 

a.9m 

a1.800 

81.290 

a.500 

.740 

a.550 

8.333 

8.395 

a. 273 

a.266 

8.230 

a.260 

Fth 
Mii/m2 

10.24 

5.23 

6.76 

12.41 

8.895 

3.45 

5.10 

3.79 

2 . P  

2.72 

1.88 

1.83 

1.59 

1.79 

~ 

21.3 

19.8 

20.1 

20.3 

20 

21.5 

27 

20.7 

19.5 

20.5 

20.2 

20 

21.1 

20.4 

~ 

~~ 

Total 
compression, 

% 
~ 

Load 
time t o  
Npture, 

6 

270 

300 

300 

350 

300 

480 

360 

3 F  

300 

330 

360 

330 

390 

360 

astress a t  EO$ strain. 
bSpecimen cooled to -YOo F (890 K), warmed up t o  -2000 F (145O K), and soaked at  -200O F (145O K) for 30 minutes (1800 seconde). 
'Soaked at  temperature for m minutes (1800 seconds). 

79 

b 



. . . ._ .. . 

emperature 
- 

OK 

339 
- 

339 

394 

394 

450 

450 

450 

505 

505 

561 

$1 

516 

516 

572 

572 

- 

Stress 

0.058 . ll8 
.l68 

226 
.200 

.093 

.151 

.Em 

.2l2 
239 

.0795 . l l 5  

.152 

.I93 

.212 

.OB35 

.ll7 

.144 

.I75 

.m2 

.0825 

.I35 

.183 

.214 

.248 

.Ow4 

. =5 

.118 

.246 

.090 

.148 

.la0 

.238 

.240 

.0638 

.lo4 

.152 

.lea 

.I77 

.0714 

. u 3  

.160 

.184 

.210 

.0745 

.118 

.1% 

.176 

.186 

.05% 

.098  

.I35 

.174 
-235 

.0397 

.0627 

.0856 

.lo2 

.lo8 

.0387 

.618 

.0817 

.0962 

.loo 

.0147 

.0218 

.0284 

.035  

.03b  

.0116 

. O l e 6  

.0266 

.0293 

.0316 

.215 

.__ 

- 
m/m2 

0.40 

1.16 

1.56 
.64 

1.04 
1.31 
1.46 
1.65 

_ _  

.814 

1.38 

.548 

.793 
1.05 
1.33 
1.46 

,576 . so7 
,993 

1.21 
1.39 

.569 

.931 
1.26 
1.48 
1.71 

.554 

.793 

.814 
1.48 
1.70 

.62 
1.02 
1.24 
1.64 
1.66 

.440 

.717 
1.05 
1.30 
1.22 

.492 

.a48 
1.10 
1.V 
1.45 

.514 

.814 
1.08 
1.21 
1.28 

.404 

.626 

.931 
1.20 
1.62 

.274 

.432 

. 5 9  

.703 

.745 

.267 

.426 

.563 

.663 

. 6 9  

.lo1 

.I50 

.I% 

.210 
234 
.m 
.l28 
.183 . m2 
.218 __ 

Aria1 
s t ra in  

.... . 

0.0270 
.0624 
-0995 
.E580 
.I935 
.0430 
.0769 
.io70 
.14p  
.I970 

.0412 

.0989 

.1560 

.19& 

.05U 

.0750 

.lo35 

.I495 

. a02  

.0441 
JJ705 
.io62 
.14& 
.I998 
. O X 8  

.0912 

.I370 

.I985 

.Ob56 

.0758 

.lo95 

.1618 

.2oOo 

.Ob71 

.0662 

.om5 

.0794 

.=35 

.1760 
,2042 
.0371 
.0706 
.lo43 
.I315 
.1B3 

.0648 

.lo15 

.I395 

.1780 

.Oh21 

.lo05 

.I390 

. a 5 0  

.0662 

.1665 

.0700 

.io05 

.1.305 

.1650 

.0041 
J659 
.0977 . 1285 
.I595 

.0294 

.0591 

.I495 

.moo 

.0247 
,0570 
.lo18 
.1463 
.moo 

.0424 

.io32 

COMPRESSIVE PROPERTIES OF FILLED SILICONE RESIN (SFiI) - Concluded 

- . .. 

Lateral 
strain 

~. 

O.Oll4 
.0253 
.0397 

.0732 

.0546 

.0162 

.0298 

.Oh10 
-095  
.0719 

.0145 

.0235 

.0346 

.0558 

.0707 

.0157 

.0235 

.03ll 

.ob67 

.0672 

.0168 

.0300 

. o w  

.0681 
.0922 

.0192 
-0378 
.0567 
,0822 
.0047 
. o m  
.0377 
.0687 
.0874 

.0178 

.0332 

.0676 

.am 

.0937 

.0169 

.0375 

.0565 

.0682 

.0138 

.0942 

.0148 

.0292 

.om6 

.0660 

.OB08 

.0099 

.0199 
JJ339 
.0492 
.0694 

.oow 

.0154 

.0252 

.0329 

.0066 

.0243 

.0318 

.04W 

.0381 

.0151 

1 
1 
1 
.0001 
.coo2 

~ .0008 
-.mi6 
- .0022 - .0036 
-.0039 
... .. 

?oisson'a 
ra t io  

0.43 
.41 
.40 
.40 
.38 
.38 
.39 
.38 
.40 
.37 

.35 

.36 

.35 
,36 
.36 
.31 
.31 
.31 
.31 
.33 

.38 

.43 

.46 

.46 

.46 

.43 

.40 

.42 

.41 

.41 

.10 

.24 

.34 

.42 

.44 

.38 

.42 

.55 

.49 

.46 

.46 

.53 

.54 

.52 

.50 

.23 

.29 

.35 

.37 

.38 

.24 

.3 

.34 

.35 

.42 

.19 

.22 

.25 

.25 

.23 

.16 

.23 

.25 

.25 

.26 

0 
0 
0 
0 
0 

d-.03 
-.03 
-.02 
-.02 
-.02 

~~ 

Young' 8 

modulus 

ksi 

2.0 

2.1 

1.9 

1.6 

1.9 

2.3 

2.0 

1.3 

2.0 

1.2 

1.4 

.97 

.94 

.50 

.48 

__ 

__ 
m/m2 

14 

14 

13 

11 

13 

16 

14 

9.0 

14 

8.3 

9.6 

6.7 

6.5 

3.4 

3.3 

Yield strength 
a t  0.3 offset  

Psi  

115 

u-5 

108 

100 

145 

120 

110 

124 

95 

130 

235 

72 

60 

17 

15 

.793 

.793 

.745 

.690 

1.03 

.8r 

.7% 

.a55 

.65 

.896 

t.62 

.49 

.41 

.E 

.10 

. 

Ultimate 
strength 

astress a t  m$ s t ra in .  
dlVegative values due t o  negative values of l a t e ra l  strain result ing from degradation phenomena. 

!si 

a. 226 

a.239 

a.212 

a.202 

a.248 

a.246 

a.240 

.177 

.210 

.1% 

,235 

.108 

.loo 

a.034 

a.0316 

.. 

m/m2 

1.56 

1.65 

1.46 

1.39 

1.71 

1.70 

1.65 

1.22 

1.45 

1.28 

1.62 

.745 

.6g0 

.23 

.218 

Total 
:ompression, 

z 
19.4 

19.7 

19.8 

20 

20 

19.9 

m 

20.4 

18.8 

21.5 

16.7 

16.5 

16 

20 

20 

Load 
time t o  
rupture, 

300 

5 

270 

240 

210 

150 

150 

4m 

270 

300 

180 

150 

150 

150 

270 

240 
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( a )  Cross sec t ion  taken on plane perpendicular t o  thickness d i rec t ion .  

(.b) Cross section through thickness d i rec t ion .  L-65-119 

Figure 39.- Photomicrographs a t  X l O O  magnification of high-density phenolic-nylon char (SFU). 
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(a) Cross section taken on plane perpendicular to thickness direction. 

(b) Cross section through thickness direction. L-65-120 

Figure 4 0 . -  Photomicrographs at XlOO magnification of low-density phenolic-nylon char (SRI). 
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Figure 41. - Tensile stress-strain curves for high-density phenolic-nylon (Melpar) . 
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Figure 74.- Tensile ul t imate  s t rength of high-density phenolic-nylon (Melpar). 
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Figure 76.- Tensile ultimate strength of low-density phenolic-nylon. 
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Figure 81.- Compressive ul t imate  s t rength of f i l l e d  s i l i cone  r e s i n  i n  honeycomb (Melpar). 

168 



6 

5 

4 

3 

2 

1 

0 

100 
~. 

I 

200 

I 

Temperature ,  OIC 

300 400 500 600 700 

I i - -  I I 

0 

-400 -200 0 200 400 600 800 

Temp e r a  t,ur e ,  O F 
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